V1298Tau_Paper_Calculations_and_Plots.ipynb 1.4 MB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "With this notebook you can reproduce the results from the paper <br> **X-ray irradiation and evaporation of the four young planets around V1298 Tau - Poppenhaeger, Ketzer, Mallonn (2020)**\n",
    "."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Import"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "\n",
    "# Planet Classes\n",
    "sys.path.append('../platypos_package/')\n",
    "from Planet_class_LoFo14_PAPER import planet_LoFo14_PAPER # this is the code with fixed step size\n",
    "from Planet_class_LoFo14 import planet_LoFo14 # this is the code with variable step size\n",
    "from Planet_class_Ot20_PAPER import planet_Ot20_PAPER # this is the code with fixed step size\n",
    "from Planet_class_Ot20 import planet_Ot20  # this is the code with variable step size\n",
    "import Planet_models_LoFo14 as plmo14\n",
    "import Planet_model_Ot20 as plmoOt20\n",
    "from Lx_evo_and_flux import  Lx_evo, flux_at_planet_earth\n",
    "\n",
    "# functions for evolving more than one planet at once\n",
    "sys.path.append('../population_evolution/')\n",
    "from evolve_planet import evolve_one_planet, evolve_ensamble\n",
    "from create_planet_chunks import create_planet_chunks\n",
    "from create_summary_files import create_summary_files_with_final_planet_parameters\n",
    "from read_in_PLATYPOS_population_results import read_results_file, read_in_PLATYPOS_results, read_in_PLATYPOS_results_dataframe\n",
    "\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib\n",
    "matplotlib.rcParams.update({'font.size': 18, 'legend.fontsize': 14, 'axes.linewidth':1.1}) #set values globally\n",
    "from matplotlib.ticker import ScalarFormatter, FormatStrFormatter\n",
    "import matplotlib.ticker as ticker\n",
    "from astropy import constants as const\n",
    "from PyAstronomy import pyasl # to fetch Exoplanet.eu cataloge\n",
    "from sklearn.neighbors import KernelDensity\n",
    "\n",
    "p = \"../supplementary_files/\"\n",
    "# Tu et al. (2015) - model tracks\n",
    "blueTu15 = pd.read_csv(p+'Lx_blue_track.csv')\n",
    "redTu15 = pd.read_csv(p+'Lx_red_track.csv')\n",
    "greenTu15 = pd.read_csv(p+'Lx_green_track.csv')\n",
    "                    \n",
    "# Jackson et al. (2012) - Lx sample\n",
    "jack12 = pd.read_csv(p+\"Jackson2012_Lx_clean.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Present V1298 Tau parameters, $L_x$ evolutionary tracks, and planet models\n",
    "First we need to define all the necessary system parameters. <br>\n",
    "This includes the host star parameters, parameters to set the shape of the assumed future $L_x$ evolutionary tracks, and the planets themselves. <br>\n",
    "To model the radius evolution of the planets we use the results from *Lopez & Fortney (2014)* and *Otegi et al. (2020)*."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>radius</th>\n",
       "      <th>a</th>\n",
       "      <th>period</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>planet_c</th>\n",
       "      <td>5.59</td>\n",
       "      <td>0.0825</td>\n",
       "      <td>8.24958</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>planet_d</th>\n",
       "      <td>6.41</td>\n",
       "      <td>0.1083</td>\n",
       "      <td>12.40320</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>planet_b</th>\n",
       "      <td>10.27</td>\n",
       "      <td>0.1688</td>\n",
       "      <td>24.13960</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>planet_e</th>\n",
       "      <td>8.74</td>\n",
       "      <td>0.3080</td>\n",
       "      <td>60.00000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          radius       a    period\n",
       "planet_c    5.59  0.0825   8.24958\n",
       "planet_d    6.41  0.1083  12.40320\n",
       "planet_b   10.27  0.1688  24.13960\n",
       "planet_e    8.74  0.3080  60.00000"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Stellar Parameters:\n",
    "# -------------------\n",
    "# (David et al. 2019, Chandra observation)\n",
    "L_bol, mass_star, radius_star = 0.934, 1.101, 1.345 # solar units\n",
    "age_star = 23. # Myr\n",
    "Lx_age = Lx_chandra = 1.3e30  # erg/s in energy band: (0.1-2.4 keV)\n",
    "Lx_age_error = 1.4e29\n",
    "# use dictionary to store star-parameters\n",
    "star_V1298Tau = {'star_id': 'V1298Tau', 'mass': mass_star, 'radius': radius_star, 'age': age_star, 'L_bol': L_bol, 'Lx_age': Lx_age}\n",
    "\n",
    "\n",
    "# Lx evolutionary tracks:\n",
    "# -----------------------\n",
    "# create dictionaries with all the values necessary to define the evolutionary paths (this is done by the function Lx_evo)\n",
    "# this includes: starting age, age until Lx is saturated, two fixed ages at 1 & 5 Gyr which are set by the Tu et al. (2015) model tracks, \n",
    "# and (if wanted) a time interval in which and factor by which Lx drops (if you want a to mimic a track which drops fast early and then levels out).\n",
    "Lx_1Gyr, Lx_5Gyr = 2.10*10**28, 1.65*10**27  # Lx value at 1 and 5 Gyr from Tu et al. (2015) model tracks\n",
    "\n",
    "# use dictionaries to store track-parameters\n",
    "track1 = {\"t_start\": star_V1298Tau[\"age\"], \"t_sat\": 240., \"t_curr\": 1000., \"t_5Gyr\": 5000., \"Lx_max\": Lx_age, \"Lx_curr\": Lx_1Gyr, \"Lx_5Gyr\": Lx_5Gyr, \"dt_drop\": 0., \"Lx_drop_factor\": 0.}\n",
    "track2 = {\"t_start\": star_V1298Tau[\"age\"], \"t_sat\": star_V1298Tau[\"age\"], \"t_curr\": 1000., \"t_5Gyr\": 5000., \"Lx_max\": Lx_age, \"Lx_curr\": Lx_1Gyr, \"Lx_5Gyr\": Lx_5Gyr, \"dt_drop\": 0., \"Lx_drop_factor\": 0.}\n",
    "track3 = {\"t_start\": star_V1298Tau[\"age\"], \"t_sat\": star_V1298Tau[\"age\"], \"t_curr\": 1000., \"t_5Gyr\": 5000., \"Lx_max\": Lx_age, \"Lx_curr\": Lx_1Gyr, \"Lx_5Gyr\": Lx_5Gyr, \"dt_drop\": 20., \"Lx_drop_factor\": 16.}\n",
    "list_tracks = [track1, track2, track3]\n",
    "\n",
    "# these are the tracks which use the upper and lower value of the current Lx\n",
    "track1_lower = track1.copy()\n",
    "track1_lower[\"Lx_max\"] = Lx_age-Lx_age_error\n",
    "track2_lower = track2.copy()\n",
    "track2_lower[\"Lx_max\"] = Lx_age-Lx_age_error\n",
    "track3_lower = track3.copy()\n",
    "track3_lower[\"Lx_max\"] = Lx_age-Lx_age_error\n",
    "list_tracks_lower = [track1_lower, track2_lower, track3_lower]\n",
    "\n",
    "track1_upper = track1.copy()\n",
    "track1_upper[\"Lx_max\"] = Lx_age+Lx_age_error\n",
    "track2_upper = track2.copy()\n",
    "track2_upper[\"Lx_max\"] = Lx_age+Lx_age_error\n",
    "track3_upper = track3.copy()\n",
    "track3_upper[\"Lx_max\"] = Lx_age+Lx_age_error\n",
    "list_tracks_upper = [track1_upper, track2_upper, track3_upper]\n",
    "\n",
    "# additional tracks could look like this (different t_sat)\n",
    "#track2_2 = {\"t_start\": star_V1298Tau[\"age\"], \"t_sat\": 70., \"t_curr\": 1000., \"t_5Gyr\": 5000., \"Lx_max\": Lx_age, \"Lx_curr\": Lx_1Gyr, \"Lx_5Gyr\": Lx_5Gyr, \"dt_drop\": 20., \"Lx_drop_factor\": 5.}\n",
    "#track2_3 = {\"t_start\": star_V1298Tau[\"age\"], \"t_sat\": 100., \"t_curr\": 1000., \"t_5Gyr\": 5000., \"Lx_max\": Lx_age, \"Lx_curr\": Lx_1Gyr, \"Lx_5Gyr\": Lx_5Gyr, \"dt_drop\": 0., \"Lx_drop_factor\": 0.}\n",
    "\n",
    "\n",
    "# Observed planet parameters \n",
    "# --------------------------\n",
    "# radius R, semi-major axis a and period P from David et al. (2019)\n",
    "pl_params = pd.read_csv(\"../supplementary_files/V1298Tau_planet_parameters.csv\", index_col=0)\n",
    "\n",
    "R_c, R_d, R_b, R_e = pl_params.loc[\"planet_c\"].radius, pl_params.loc[\"planet_d\"].radius, pl_params.loc[\"planet_b\"].radius, pl_params.loc[\"planet_e\"].radius\n",
    "a_c, a_d, a_b, a_e = pl_params.loc[\"planet_c\"].a, pl_params.loc[\"planet_d\"].a, pl_params.loc[\"planet_b\"].a, pl_params.loc[\"planet_e\"].a\n",
    "P_c, P_d, P_b, P_e = pl_params.loc[\"planet_c\"].period, pl_params.loc[\"planet_d\"].period, pl_params.loc[\"planet_b\"].period, pl_params.loc[\"planet_e\"].period\n",
    "pl_params.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Plot current V1298 Tau $L_x$ & evolutionary tracks used in the paper"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAGKCAYAAACRoICfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4Tdf6wPHvzkQiEoQYEjVLKGoKap5Li1IpQUuCn9vb1r1qKjXrrLhKqzrcKygaxFA1z1MRWh1QgkrMgiCRSZKzfn/s5MhJcjInJ4n38zx55Oy99trvPpHkzRo1pRRCCCGEEEJYWToAIYQQQghROEhiKIQQQgghAEkMhRBCCCFEEkkMhRBCCCEEIImhEEIIIYRI8lQmhpqmLdY07aqmaRGapl3XNG2Bpml2Kc6/pWlakKZpsZqm7bdgqEIIIYQQBeapTAyBLwBPpZQT0Bh4Dng3xfmbwCfAfywQmxBCCCGERdhYOgBLUEqdTX0IqJ3i/HoATdOeKci4hBBCCCEsqVC3GGqaNlnTtLWapv2taZrSNC0kg7JWmqa9o2nauaQu4Kuaps3TNK2UmfKTNE2LBMKARsCi/HkKIYQQQoiioVAnhsBHQGfgEnA/k7L/AeYDZ4HRwFrgX8BmTdPSPKdS6hOlVGmgPvANcCsP4xZCCCGEKHIKe1dyLaXU3wCapp0GHNMrpGnas+jJ4HqlVP8Uxy8DCwEfYFV61yql/tI07TfAH+iap9ELIYQQQhQhhbrFMDkpzIJBgAYsSHX8WyAaeC2T662BOtmLTgghhBCieCnUiWE2eAEGICjlQaVULPBb0nkANE1z1DTNT9O0MpquITAN2JGijI2maSXRW1StNE0rmXI5GyGEEEKI4qiwdyVnVRXgrlIqLp1z14HWmqbZKaUeo89AHgzMA+zQJ58EAjNSXDM11esY4ADQMfmApmkaUAl4lHePIYQQQgiRbxyBW0opZa5AcUkMHYD0kkKA2BRlHiulooBuGVWmlJoJzMzknpWAG1kPUQghhBDC4qqgr9ecruKSGEYDrmbOlUxRJi89Arh+/TqlS5fO46qFEEIIIfJOZGQkbm5ukElPZ3FJDG8A9TVNK5FOd7Ibejfz4/y4cenSpSUxFEIIIUSxUFwmn5xAf5YWKQ8mTSBpDJy0RFBCCCGEEEVJcUkMA9AnlYxJdfz/0McWrsyvG48ePZrNmzfnV/VCCCGEEAVGy2BiisVpmvY6UC3p5Wj0WcTzkl6HKqVWpCi7CHgb2ABsBeqh73xyBOislDLkcWylgYiIiAjpShZCCCFEoRYZGYmTkxOAk1Iq0ly5wp4Y7gc6mDl9QCnVMUVZa/QWw1FAdeAuekvidKVUni8pI4mhEEIIIYqKYpEYFmaSGAohhBCiqMhqYlhcZiVbzOjRo+nfvz+9e/e2dChCCFFoRUREEBYWRnx8vKVDEaLYsbW1xdXVNTnxyxVpMcwhaTEUQoisiYiI4Pbt27i5uWFvb4++cZQQIi8opYiJieH69etUrFjRbHKY1RbD4jIrWQghRCEVFhaGm5sbDg4OkhQKkcc0TcPBwQE3NzfCwsJyXZ8khkIIIfJVfHw89vb2lg5DiGLN3t4+T4ZqSGIohBAi30lLoRD5K6++xyQxzCVZ4FoIIYQQxYUkhrm0aNEimZEshBDFnK+vL82bN8+0nKZpfPHFF9mqOyQkBE3T+Omnn3IaXq4EBwczc+ZMHjx4YHLc398fTdN49CjrSwHv378fTdM4ffo0AI8fP2bmzJn89ttveRLrzp07WbBgQZ7UlR3Vq1dn/PjxBX5fS5DEUAghhMgjR48e5dVXX7V0GNkSHBzMrFmz0iSGL730EkePHsXBwSHLdTVt2pSjR49Sq1YtQE8MZ82aVeQTw6eJrGMohBBC5JFWrVpZOoQ8U6FCBSpUqJCta5ycnArFe5CYmEhiYiJ2dnaWDqXIkRZDIYQQIot27dpFo0aNKFWqFG3btuXMmTMm51N3JSulmDZtmnHx4eHDh/PDDz+gaRohISEm10ZHR/OPf/wDZ2dn3N3dmTFjBgaDIcN4tmzZQrdu3Yz1t2rVip07d6Yp98cff9C7d2/KlCmDo6MjLVq0YNeuXezfv984HKpGjRpomkb16tWBtF3JNWrUYOLEiWnq9vb2pl27dkDaruTkdX79/PzQNM343F5eXvj5+aWpa9iwYTRt2jTdZ505cybz5s0jNDTUWJevry/wpKt/48aNPPvss5QsWZLjx49z8+ZNhg8fTs2aNbG3t6du3bpMnTqVx48fm9QdExPDxIkTqVatGiVKlKBGjRpMnjzZ7Pt+/fp1PDw86Nq1K9HR0WbLFUXSYphLsvOJEEJkT2Ki4vbtWIvGULFiSaytszeL88qVK0yYMIEpU6Zgb2/P+PHjGTBgAKdPnzY7I3TBggV89NFHTJkyhbZt27Jp06Z0kyuAiRMn0r9/f9atW8eePXuYPXs2zz77LAMGDDAb0+XLl+nduzfjx4/HysqKbdu20bNnTw4ePEibNm0AOHfuHG3atMHDw4MlS5bg4uLCyZMnuXr1Kt7e3sydO5fx48ezfv16KleuTIkSJdK914ABAwgICODTTz81Pu+jR4/YunUrc+bMSfeavXv30rlzZ6ZOncpLL70EQOXKlRk5ciTjxo1j0aJFODo6GusKDAzk448/TreukSNHcuHCBfbu3cuGDRsATFo0Q0JCmDhxItOnT6dixYrUqFGDu3fvUq5cOebPn0/ZsmWN4ynv3LnD119/DejJ+8svv8zRo0eZNm0azZo14/r16xw6dCjdOEJCQujSpQuenp4EBgZSsmRJs1+fokgSw1xatGiR7HwihBDZcPt2LNWrWWaiRbKQ0F5UqZK9tRXDw8M5cuQIderUAcBgMNCvXz/Onz+Pp6dnmvKJiYnMmTOHN954g9mzZwPQvXt3Ll++zNWrV9OUb9++PfPmzQOgW7dubN++nfXr12eYGL799tvGzw0GA506deLMmTP897//NSaGs2bNwtnZmUOHDhnXk+zWrZvxOg8PDwCaNGlibC1Mj4+PD3PmzOH48ePG7uLNmzcTFxdndlyll5cXALVq1TLpYh40aBBjx45l7dq1xpbDNWvWEB8fz+DBg9Oty93d3Zi4ptddfe/ePXbv3k3jxo1Nrpk7d67xdZs2bShVqhTDhw9n0aJF2NnZsXPnTnbt2sWmTZvo06ePsezQoUPT3OPixYt07twZLy8vVq9eXSy7qqUrWQghhMiC6tWrG5NCgPr16wNw7dq1dMtfvXqVW7dumSQbQJrXybp3727yun79+mbrTnbt2jWGDRuGm5sbNjY22NrasnPnToKDg41l9u7dy8CBA3O9yHiTJk2oW7cuAQEBxmMBAQF07NiRihUrZqsuJycnvL298ff3Nx7z9/enT58+uLi45Cg+Nzc3k6QQ9NbABQsWUL9+fezt7bG1tWXIkCHExcVx5coVQH9/ypUrZ/brkuz8+fO0b9+etm3bEhAQUCyTQpAWQyGEEAWsYsWShIT2sngM2VWmTBmT18mJQWxs+t3it27dAkgzgcPchI706jdXN+gthH369CEyMpLZs2dTu3ZtSpUqxfTp0022Rrt37x6VK1c2W092DBw4kP/973/Mnz+fyMhItm/fzqJFi3JU14gRI+jYsSOXLl0C4NChQ2zdujXHsaWXnC5YsIDx48czadIkOnToQNmyZTlx4gRvvfWW8b3N6vvz888/Ex4ezsiRI7GxKb7pU/F9MiGEEIWStbWW7W7coqhSpUoA3Llzx+R46tc5dfHiRU6dOsW2bdvo0aOH8XhMTIxJORcXF27evJkn9/Tx8eH999/n8OHDXL58mcTERF555ZUc1dW+fXvq1KnDsmXLUEpRpUqVNK2m2ZHeOM+1a9fy6quv8uGHHxqPnT171qRMVt8fPz8/IiIi6Nu3L7t376ZFixY5jrUwk65kIYQQIh9UrVqVSpUqsWnTJpPjP/74Y57Un5wAppwsEhoaypEjR0zKdenShTVr1phtfcys5TOl+vXr06BBAwICAggICKBbt24Zdv1mVvfw4cNZtmwZy5cvZ+jQoVhbW2d4/8xaUVOLiYlJM5lm5cqVJq+7dOlCeHh4lhYYX7JkCb169aJnz578+eefWY6jKJEWQyGEECIfWFtbM2HCBCZMmECFChVo06YNP/74ozGhsLLKXduMp6cn7u7ujBs3jvfff5/IyEhmzJiBm5ubSbkZM2bg5eVF+/btGTduHC4uLpw6dQoXFxeGDx9unHzy9ddf4+Pjg4ODAw0bNjR734EDB/L555/z8OFDvv322wxjtLOzo0aNGqxZs4YGDRpQsmRJGjVqZEwYhw0bxtSpU0lISDAuPZPZM9++fRt/f38aNGhA+fLlM5ww061bNxYuXEjLli2pVasWK1eu5OLFi2nKvPDCCwwePJjp06fTtGlTbt68ycGDB40zl5NZWVmxfPlyvL296d69OwcPHjQZd1ocSIthLsleyUIIIcx55513eO+991i8eDH9+/fn/v37vPfee4A+ASM3SpQowfr167GxscHb25tp06YxefJkOnToYFLOw8ODw4cPU758eUaOHEm/fv1Yt24d1apVA6BatWrMnTuX9evX06ZNm0yXX/Px8eHu3btYWVnRt2/fTONcsmQJd+/epWvXrnh5eXHjxg3juUqVKtGyZUvjcjqZGTBgAL6+vkycOBEvLy9mzpyZYfnp06czaNAgpk6dyqBBg7Czs2PhwoUmZTRNY8OGDYwaNYoFCxbQs2dPpk6dSvny5dOt08bGhoCAABo2bEjXrl3TnWFelGlKKUvHUCRpmlYaiIiIiJDlaoQQIgN//fUX9erVs3QYhcbIkSPZtWsXoaGhlg7F4sLDw3Fzc+OLL75gxIgRlg6nyMvoey0yMjL5jxEnpVSkuTqkK1kIIYTIJ6dPnyYgIIDWrVsbF6BeunQpn376qaVDs6jIyEjOnj3L559/TunSpRk0aJClQxJJJDEUQggh8kmpUqU4fPgwX3zxBVFRUVSrVo1PP/2UcePGWTo0i/rll1/o1KkT1apVY/ny5Tg4OFg6JJFEEkMhhBAin9SoUYN9+/ZZOoxCp2PHjshQtsJJJp8IIYQQQghAEkMhhBBCCJFEEkMhhBBCCAFIYphrso6hEEIIIYoLmXySS4sWLZJ1DIUQQghRLEiLoRBCCCGEACQxFEIIIQqln376CU3TCAkJASAkJARN0/jpp58sG1ge2LlzJwsWLEhz3NfXl+bNm2errpkzZ5psXxccHMzMmTN58OBBruME+Oabb9i4cWOe1JVVlvxaS2IohBBCFAGVK1fm6NGjtG3b1tKh5Jq5xHDatGn4+/tnq66RI0eyY8cO4+vg4GBmzZpVpBNDS5IxhkIIIUQRUKJECVq1amXpMPJVrVq1sn2Nu7s77u7u+RBN9sTExGBvb2/pMHJNWgyFEEKITCR3cW7ZsoX69evj4ODASy+9RHh4OBcvXqRTp06UKlWK5s2b88cff5hcazAY+OSTT6hduzYlSpSgbt26LFu2zKSMUoqZM2fi6upK6dKlGTp0KBERESZl0ute1DSNL774wqRc6q5Vf39/NE3j119/pWPHjjg4ONC4cWN+/fVXoqKi8PPzw9nZmZo1a7J69epM34t58+bh5eWFs7MzFStWpHfv3ly8eDFNuQ0bNtCiRQvs7e1xcXHhxRdfJDQ0lJkzZzJv3jxCQ0PRNA1N0/D19TV5nwEuX76Mpmls3brVpN7ExEQqVarEtGnT0jzv/v376d27N6DvOqNpGtWrVyc8PJySJUum+77XqFGDsWPHpvusHTt25JdffmHZsmXGWJNbNKtXr864ceN4//33cXd3x8nJCYCjR4/Sp08fqlSpQqlSpWjcuDErV65MU3doaCiDBg2ifPnyODg40KhRI1atWmX2fd+/fz+lS5fmvffeM1smL0hiKIQQQmTBlStXmD59Oh988AHffPMNP//8M6NGjcLHxwcfHx/WrVtHQkICPj4+Jtu9jR49mg8++IBRo0axZcsW+vXrx/Dhw00SvIULFzJ79mxGjRrFunXrsLe3Z+LEiXka/7Bhwxg0aBCBgYEopfD29mbEiBFUqVKFdevW0bJlS4YOHcq1a9cyrOfatWu8/fbbbNq0iW+//ZbExETatGnDw4cPjWVWrFjBK6+8Qq1atVizZg1Lly6lbt263Llzh5EjRzJ48GAqVarE0aNHOXr0qDHJS6lGjRq0aNGCgIAAk+MHDhzg9u3bDBw4MM01TZs2Ze7cuQCsX7+eo0ePsmHDBsqVK0e/fv1YunSpSfn9+/cTEhKCn59fus+6ePFiPD09efHFF42xvvTSS8bzq1at4sCBAyxevNgYZ2hoKG3atOG7775j8+bN9O/fHz8/P5OkOywsjOeff54TJ04wd+5cNm/ezIgRI7h69Wq6cezYsYMXX3yRCRMm8NFHH6VbJs8opeQjBx9AaUBFREQoIYQQ5p09e9bkdWJioop8FGnRj8TExGw9w7Bhw5S1tbW6ePGi8diECRMUoJYtW2Y8tmXLFgUYn/nChQtK0zTl7+9vUt/rr7+umjdvrpRSKiEhQVWuXFm98cYbJmW6du2qAHX58mWllFKXL19WgNq8ebOxDKAWLVpkct2MGTOUi4uL8fXSpUsVYBJDcpx+fn7GYw8ePFA2NjZq8eLFWX5fEhISVHR0tHJ0dDS+D4mJiapKlSqqX79+Zq8bN26cqlatWprjw4YNU82aNTO+nj9/vnJyclKxsbHGY6NGjVL169c3+7ybN282ed+S7dq1S2mapi5dumQ89vrrr5vcLz3NmjVTw4YNS3O8WrVqqlKlSiomJsbstQaDQcXHx6tRo0apTp06GY9PmjRJOTg4qBs3bqR7Xcqv9aZNm1SJEiXUZ599lmGcSqX9XkspIiJCAQoorTLIb2SMoRB56ORJ+PlnSEyExo2hUyfT8+fPQ926oGmWiU+IwiA6Jpqly/5n0Rj8hg3HsZRjtq6pXr26yRi42rVrA9C5c+c0x65fv069evXYs2cPVlZW9OvXj4SEBGO5Ll26sHr1ahITE7l69So3b97k5ZdfNrnfK6+8wu7du7P9bOZ06dIlw9idnZ2pUKEC169fz7CeY8eOMW3aNH799VfCw8ONx4ODgwE4f/48N27cMNsKlx0DBgxg3LhxbN++nZdffpmEhATWr1/Pv/71r2zX1aVLF6pVq8ayZcuYNWsWkZGRrF+/nk8//TTH8XXp0oWSJUuaHLt//z4zZsxg06ZNXL9+ncTERADc3NyMZfbu3UuPHj2oXLlyhvUHBgayatUq5s+fz1tvvZXjOLNDupJzSXY+ESnVrg23b8O5c3Drlum5U6dg/nz46iuIjrZMfEKInCtTpozJazs7uzTHk4/FxsYCcPfuXRITE3F2dsbW1tb44evrS0JCAjdv3uRW0g8LV1dXk/pTv87L+NOLPfl4cuzpuXLlCt27d0cpxddff82RI0c4ceIErq6uxuvu3bsHkGnSkxVubm60bdvW2E27Z88e7t69i4+PT7br0jQNPz8/li1bhlKKNWvWkJCQwODBg3McX8WKFdMc8/X1JSAggAkTJrBz505OnDjB8OHDTd7Xe/fuZen9+fHHH43d4AVFWgxzSXY+ESmVKQNDhsBPP0GKsd8oBcnjp4ODISoKHBwsE6MQluZg74DfsOEWj6EglCtXDhsbG44cOYKVVdq2GFdXV2NLYlhYmMm51K/TU6JECR4/fmxyLGUrXl7bvn070dHRbNq0iVKlSgGQkJBgck8XFxcAbt68mSf3HDhwIJMmTSImJoaAgACaNGlCnTp1clSXn58fs2bNYt++ffj7+9O3b1/Kli2b49i0VN0/sbGxbNmyhS+++II33njDeNxgMJiUc3FxydL7s2jRIubPn0+3bt04ePCg8b3NT5IYCpELsbFw/TqkXGGhfn39IyVNg3fegWXLoHVrqFChYOMUojCxsrLKdjduUdW5c2cSExN5+PAh3bp1S7dM1apVqVSpEps2baJHjx7G4+vXr8+0fnd3d/766y/ja4PBwN69e3MfuBkxMTFYWVlhY/MkfUhueUvm4eGBm5sby5YtM84QTi2zlsmUXn31Vf7973+zYcMGNmzYwOTJkzMsn7rVNqWqVavSvXt3ZsyYweHDh9m+fXum989OrHFxcSQmJlKiRAnjscjISH788UeTJLJLly4sXLiQ27dvp9vqmMzJyYkdO3bQoUMHXnjhBfbu3Wuc/ZxfJDEUIoeiomDhQj0xHDNG70bOiIMDvPFG2vGFBgOk05AghCgGPDw8eOONN/Dx8WHixIk0b96c2NhYzpw5Q3BwMN999x3W1tZMnDiR8ePHU758edq1a0dgYKBJwmdOv379+PLLL2nSpAk1a9bku+++S7PMTV5KTnT9/PwYMWIEZ86cYe7cuSZd0lZWVsyZM4chQ4YwZMgQBg0ahKZp7N27l0GDBtG8eXM8PT25ffs2/v7+NGjQgPLly1O9evV07+nq6krHjh0ZP348Dx48YMCAARnG6OHhAcDXX3+Nj48PDg4ONGzY0Hh+xIgRvPrqq7i7u5tN1lPy9PRkx44d7NixAxcXF2rUqGG25c7Z2RkvLy9mz56Nk5MTVlZWfPLJJzg7O5t8Xd555x2WL19Ou3btmDJlClWrVuWvv/4iKioqzWx0FxcXdu3aRbt27ejVqxfbt2/HIR+7nOTXkRA5FBICoaEQHw8HDmTtmtRJ4c2b8OGHkGrZMyFEMfLll18ybdo0li9fzosvvoivry9btmyhffv2xjJjxozhvffeY8mSJfTv359Hjx4xZ86cTOueMWMGr776KlOnTsXX15fGjRszfHj+ddM3bNiQpUuXcvz4cXr16sWqVatYu3Ytzs7OJuUGDx5MYGAg586dw9vbm6FDh3Lu3DkqJHWXDBgwAF9fXyZOnIiXlxczZ87M8L4+Pj7cvHmTVq1amU0gk1WrVo25c+eyfv162rRpk6bVslevXtjY2DBs2LB0u/dTmzp1KvXq1WPAgAF4eXllOq9g1apV1KhRg6FDh/Lvf/+b/v37M3ToUJMyFSpU4MiRIzRp0oQxY8bQq1cvvvnmG5555pl066xcuTJ79uwhJCSEV155Jc3wgbykqRRrLYms0zStNBAREREhYwyfEvfv661+KXoIOHoUzp4FX1+wts5effHxMGUKPHwIpUrBjBmQ6merEMXCX3/9Rb169SwdhhAAbN26lV69ehEcHGycnV1cZPS9FhkZmdwN7aSUijRXh7QYCpGJqCj4+mt47z04ftz03PPPw/Dh2U8KAWxt4dVX9VbEDh1A/r4QQoj8c+PGDQ4cOMCkSZN48cUXi11SmFckMRQiE/b2epexwQD79ukzjFPKzZqEXl56S+HLLz8ZZ2gw6F3T9+/nvF4hhBCmvvnmG+O6g4sWLbJ0OIWWdCXnkHQlF1/x8XoLYMqhJ3v2wLVr0LEjVKuWv/e/cAGSdnTijTegSZP8vZ/IWwkJcPeunuCXKWO6LNH9+08S/po1Ta8LCdGvLV0aUk5SjI7W/+8BuLub1nfjhj4Uwc7OdGY8QFgYODrqf9hYekF16UoWomDkRVeyzEoWIoULF2DFCmjbFrp3f3I8xYYB+S55IqKmpZ3pvGuX3gVdr55p8pCRhAS9O1zTIOUqB7duwcGD8OgR9OoFKdfS3boVfvtNT1JGjzat7+uv9boaN4YWLZ4cv3dPf/9AP5dyM4AzZ/QExskJGjR4cjw2Fk6c0D+vW9f0mUJD4dIlPf6UXwuAlSshMhI8PEx3lwkJgeTtSAcPNk3iN2/WJ/k4O8Pbb5vW9/77+r/t2+vd+slOnYJNm/Qkb+xYPdFLtnAhXLyof41SbsIQHq63AgP4+UGrVk/OHToEW7bo79+SJaYxLFmiJ42tW8OwYU+OX7kC//mP/vm4cfr7lGzHDjh2DFxcIOX2qUrB7Nn6HznduoG3N0IIkSWSGAqRxGCA77/Xdy758Udo2tR0keqC0rs3PPecnhCkbIxWCrZt05M8Ly8YOfLJuePH9e7nx49h8mTTMY8zZ8KdO2kTjshIvSUU9LGSKRPDu3f1xCzVpggopSeMBoNpedCTuOT96T/80DQx3L5dX9i7Th3TxDAqSn/PAYYONU0M//xTT+Y0TU9uUrZ6nT6tJ2CpdqLi8WM9OQSIizM9d++e/p6mt8pEcotc6lU+YmL0meOgJ6gpxcfr90g9OTBlS3OqNW2N8rujJi5Ojw9k7KoQInskMRQiiZUVvPaa3hLUuzeUK2eZODRNb+lK3WV9//6TpCNpmS6jiAg9MYMnXeHJktZ65dEj02scHfXEytExbQLj5qYncI6p1iBOTIRnntFb+lInjRmt/2quKzMrXZxK6UmZre2TY5Ur67GnjsHREZ59Vv889TJfVavqiWh6idJzz+n/Vqpkerx8eWjWTI8z+X1M1qyZ/jVKnSCXLq0n7VZWkHpVjVat0nb5JhsxQn/O1DPTn3lGbykEvSs5pRdf1Fu3U743oH/9R4zQ/1+k3CAiMhL279cT7dRJtRBCgIwxzDEZY1j0XbsGf/+tdx+mFBWlLx9TGCmlt2A5O5vGeOqU3mJoZ6cvnZMyKTpyRE8WK1UCT8/8iy02Vk88NA3KljVNTiMi9BhsbU27sw0GvYtZ0/SxcCmXAoqN1RNROzuwsbH8OLmi7to1+OQT/evg7a0nhwVFxhgKUTBkjKEQObRvHwQE6MlGnTp6C1SywpoUgh5vlSppjzdpYn6SSps2+RtTspIlzbdCmdvBycpKTyLN1Sfyjpub3o1+65beulyQiaEQouiQxDCXRo8eTf/+/c3uBykKp5TdaxcvmiaGQhRHmgY+PnrrqyzfJoQwRxLDXFq0aJF0JRdyCQn6RIbGjZ90R7q7w6BB+gxPSQrF00J6c4UQmZEFrkWxduGCvmPJkiVPllJJ1qGDJIVCiKzx9fWlefPmlg4jx9asWYO/v3+a4x07dsQ7m+sZpX4vgoKCMt3rODvmzJnD/v3786y+rNi/fz+apnH69OkCvW9hJIlhHggO1tdHi4mxdCQitUqV9AWCQZ+EkR1Xr17N+4CEKCRu39aXP5L5h08Hc4nIiWpnAAAgAElEQVTh4sWL+fjjj7NV17Rp00zqCgoKYtasWbmM8AlLJIbiCelKzgM7dujrqrm6PlkoVxSsuDj4/Xd9du7w4U+W7yhdWl96xslJX/svqy5evIiHhwfBwcHUMre+iBBF1PHj+pqTSulrRzZtaumIhKXUr18/29cUlp+JMTEx2NvbWzqMYkdaDHNJKX3JE0g7oPvuXfjgA1i7Vt+eCqXSrqAr8sTp0/Df/8Kvv+qfp/TCC/oCzjbZ+DMoMDAQg8FAYGBg3gYqRCHQoIG+pJGm6dvqiZz57bff6NKlCw4ODpQtW5YhQ4Zw+/Zt4/n27dszatQo4+sdO3agaRpjx441HgsMDMTOzo7o5K6NdEyaNImGDRvi6OiIu7s7Q4YM4datW2nKffvttzRs2JCSJUtSsWJFvL29efjwIb6+vgQGBnLgwAE0TUPTNGPXb8qu5H379qFpGmfOnDGp9/79+9jZ2fHf//4XMO1K9vf3Z3TS9kjJdXfs2JEzZ86gaRoHDhwwqevRo0c4OjqycOHCdJ+1evXq3Lt3j1mzZhnrS2491DSN+fPnM2bMGCpUqEDDhg0B2LJlC926dcPV1RUnJydatWrFzp0709T9xx9/0Lt3b8qUKYOjoyMtWrRg165dZt/3H374ATs7O5ak3qaomJMWw1zSNH1tsIsX0y4GHBwMV6/qHy1bAkePwg8/QJ8+BLt1ooSDNe7upuu9iYzFxcG5c/ouFp07PzneqJG+Bp61ddqFnHMiMHA1XbrUJDDwByZOnJj7CoUoREqV0te7LFtWX/i7oKnERAwpEihLsKpYES0XP3zv3LlDx44dqVevHqtWreLRo0dMmjSJbt26cfLkSezs7Gjfvr3JH5cHDx6kZMmSHDp0yORY06ZNcUi9InsKYWFhvPfee1SpUoU7d+4wb948OnfuzJ9//ol10jN88MEHTJ8+nTfffJPPPvuM6OhotmzZwqNHj5g2bRpXrlzhwYMHLF68GAD31KulAx06dKBy5cqsWbPGpGt4w4YNAPTr1y/NNS+99BLjxo1j3rx5HD16FAAnJyfq169Pq1atWLp0KR1S7DO5du1a4uPjGTx4cLrPumHDBjp16oS3tzcjk7Z3Stmq+dlnn9G+fXtWrFiBIWll/suXL9O7d2/Gjx+PlZUV27Zto2fPnhw8eJA2Set1nTt3jjZt2uDh4cGSJUtwcXHh5MmTZocM+fv7M2rUKL755ht8fX3TLVNsKaXkIwcfQGlARUREKHNOnlTqk0+UeucdpRKjY5UaO1apUaOUmjhRfTgtRo0apdR//mN6TWKiUgaD2SqfeitW6G/hW28pFRdneu7KFaXi43N/j5CQEGVra6MuXRqrbG1tVGhoaO4rFeIpdvbsWZPXCdevq+tg0Y+E69ez9QzDhg1TzZo1M75+9913lbOzs3r48KHx2PHjxxWgVq1apZRSavv27QpQYWFhSiml2rVrp9566y1lbW2tIiMjlVJKNWnSRI0fPz7LcSQkJKhr164pQB04cEAppdT9+/eVvb29euedd8xe179/f9WhQ4c0xzt06KD69+9vfP2vf/1LeXh4mJTp3r27eumll4yvU78XixYtUno6Yerbb79VpUqVMj6rUvp7kPJ+6XFxcVEzZsxIcxxQjRs3zvDaxMREFR8fr7p37678/PyMx318fJSbm5uKjo5O97p9+/YpQP3555/qq6++UnZ2dmr16tUZ3qswSv29llJERIQCFFBaZZDfSFdyPmrWDN59F+bMASv7Evo+Wa6uPH75Va6E6av3pt72LDgY/v1vmDv3yR6tTxul9Mk8a9fq+/KmlNRzAMD166bnqlbNXnexOevXr6dz5zrUrFmOTp3qsH79+txXKkQhFxUlE1GyIygoiO7duyfvJAFAixYtqF69OocPHwagdevWWFtbc/jwYeLi4ggKCmLkyJGUL1+eo0ePEhERwR9//EG7du0yvNe2bdto3bo1zs7O2NjYGFv7goODATh69CgxMTH4+fnl+rkGDhzI+fPn+f333wG4e/cue/fuZeDAgdmuy8fHB9BbCQEuXbrE4cOHcxXnSy+9lObYtWvXGDZsGG5ubtjY2GBra8vOnTuN7w9gfIbMxiQuXLiQMWPG8MMPPxjjf9pIV3IBMCYr9erBjBnYWlkzuzZcvqzvRsDBg/r5du0IDdWIi9OXVkm9A0dgIDx+rG9rZm6Xi6IoISFtQvf99/pWaXfv6usPJvP0hLfe0v9NvXdtXgkM/IFhw+oC0L9/XVas+IExY8bkz82EKARu3IAvvoDmzeGVV/L/flYVK1Ix9V92BcyqYsVcXX/z5k2eTd6YO4WKFSsSHh4OQOnSpWncuDGHDh2ifPny2Nvb06hRI9q2bcuhQ4dISEjAYDAYuzvTc+LECfr06UO/fv2YNGkSrq6uaJpGq1atiE3aoPzevXsAVM6D9beef/55nnnmGQICAnjuuecIDAzExsaGvn37ZrsuR0dHBgwYwNKlS/Hz88Pf359KlSrRo0ePHMdXMdXXzWAw0KdPHyIjI5k9eza1a9emVKlSTJ8+nbCwMGO5e/fuZen9CQwMpHbt2nTt2jXHMRZ1khgWNBsbNPQZzK6uwP37sG6dPnguJIRqLYbSrp1+OPU2YseO6XNXoqNNE8MbN2DLFr2+du2gXLmCfKCsU8p0v9tz52DVKrhzBz7+GMqU0Y9rmp74nTihJ8IprytRQh9PmF9u3rzJ8eO/sGGDPq6wb996vPXWT9y6dYtKlSrl342FsBClYMUKfdzujh36xJS6dfP3npq1Ndbp7e1YhFSuXNkk8Uh2+/ZtmjVrZnzdrl07Dh06hIuLC23atMHKyop27dqxceNG4uPjqV+/Pi4uLmbvs2HDBipUqEBAQABa0g/C0NBQkzLJ19+8eZPy5cvn6rk0TWPAgAEEBATw0UcfERAQQM+ePXO8kcPIkSNp06YNFy5cYPny5QwdOtQ4LjKn8aV08eJFTp06xbZt20wSzphU68e5uLhwMwvdcCtXruSf//wnvXv3Ztu2bU/lrGdJDC3t4UN9emBcHDRrhqennhSlFhcH5cvrayU+84zpuWvX4ORJ/fPUS7L4++vna9fWt8NKZjDoe6aWKQP29qYJW048fqw/SlSU3j2esr7Fi/XW0UaN4PXXnxwvUUJfSw3g/PmkCTpJ+vWDwYPzfr/cffv2Zbg+1tmzZ2nXrjYVKujNta6ujrRtW4vRo0dnuKxDx44d6dSpU94GK0QB0DQYMUKfRNeli+l2kcK8li1b8tVXXxEZGWlMmk6cOEFISAht27Y1lmvXrh2LFi3Czs6Ol19+GdBnK0+ePJmoqKhMu5FjYmKwtbU1SYhWrlxpUub555/H3t6eZcuWMXfu3HTrsbOzM7YwZsbHx4e5c+fy008/ceDAAVavXp1hebuk7pvY2FhKpvqh3bp1azw9PRk+fDhXrlzJ0kSO7MSanACWKFHCeCw0NJQjR47QKEUrQpcuXVizZg0ffvhhmhhTcnd3Z8+ePbRr1w5vb282btyIbfL6Z08JSQwtrXp1mD5d37MtdbdEiqayEiX08YoGAyQmmhYzGPSkMTxc/zela9f0WdGpWx/v3YPkSWe+vvpyLsn27tXXAyxbVl8TMKWFCyE+Htq2NU3kjh/Xu39BHx+Z8o/LqCi9pTP1H2uVK+vdxJUr62uppVS2LPni2rWrfPTRh5QubYe3d0OsrEwzYhcXePvttibHZs5sx+rVp7l923T2msGgWLv2Tx49ekzt2oVjXS8hcqJ8eZg9W/8bVWTN2LFj+eqrr3jhhRd49913jbOSGzZsSP/+/Y3l2rVrR2JiIj///DPz5s0D4LnnnsPW1pYTJ05kOkylW7duLFiwgDFjxtC7d29+/vlnvk/+YZukTJkyTJs2jSlTpvD48WNefPFF4uLi2LJlCzNmzMDNzQ1PT082bdrExo0bcXd3p0qVKlQx02rbrFkzateuzahRo7C3t6dXr14ZxuiZ1Jrx+eef07lzZ5ycnPDw8DCeHzFiBBMmTOD55583ls2svi1bttCjRw8cHR3x8PAw22Lp6emJu7s748aN4/333ycyMtL4zCnNmDEDLy8v2rdvz7hx43BxceHUqVO4uLgwPNUvupo1a7J7927at2/Pa6+9xurVq7GyeoqmZGQ0M0U+cjcrOVdu31Zq9myl/v47y5ekNyN33TqlFi5UavNm0+PBwfrs3lGjlDpzxvTc99/rx8eNS1vfW2/p59atMz3+yy9P6rt82fTctm1KLVum1K5dWX6UfBUUFKRq1aqmXnjBU926NUkp9UG2P27efFd17+6patWqpoKCgizyHELkJ4Mh7cz/nMpopmRRkXomrlJK/frrr6pTp07K3t5eOTs7q0GDBqlbt26ludbT01M5ODiox48fG4/16NFDAVla9eDTTz9V7u7uysHBQXXp0kUFBwcrQC1atMik3JIlS1S9evWUnZ2dqlixonr11VeNs6bv3Lmj+vbtq8qWLasA46zf1LOSk02ZMkUBysfHJ9P3wmAwqAkTJqjKlSsrTdPSzH6+cOGCAtS3336b6bMqpdTJkydVy5YtlYODgwLUvn37lFIq3WdWSv+Z7uXlpUqWLKlq166tli5dmu7X6/fff1c9e/ZUjo6OytHRUbVo0ULt3r1bKWU6KznZr7/+qpydndXw4cOVoYgsF5IXs5I1JdPQckTTtNJARERERI7HXphlMOhTmS9f1rfwmDYtbZNaLkVE6GP8HjyAFi2ejO8D2LlTnxVsbQ3vvGN63YIF+mSR556Dbt2eHL9/X6+vVCmoVSvtxJnCJiIigjff/Ae7dm1j+fK+vPBC1vvPduy4wKBB63F2akm9euOxsZFmFlF0NPcqx7Rp9dOM1UopPl4fhhITA2+/DbltLPnrr7+oV69e7ioRRdbixYuZOHEiN27cMJnFLfJeRt9rkZGRye+/k1Iq0lwd0pVcGGmavtZNSAh06JA0SyVvOTnpCWF6unfXP9JjrtejbFnT7ujCzsnJie+/X82KFSt49dV/8o9/NOPDDztjZ2f+W+Lx4wTefXc3X355EkPiSB5Ftuf69QhAdrMRRcf27bco42zLv/5tfobJTz89Gbe8dStk0pMoRLpCQkIIDg7mo48+wtfXV5LCIuKpazHUNG0x0BtwBiKBtcBEpdTjpPM2wDzgdfQtA9cBbyml4lLVk38thsmuXdPXs8ntzBCRoQsXLuDj442DQxSHDplfX6tVq++4dcuOfv0WUL58NbPlhCisTp26z4+bbmBjo7FvXydatkp/NmxcnN5p4eAAb7yR+x4AaTF8Ovn6+rJq1So6dOjAmjVrKJtfg8eFUV60GD6NiWF9IFQpFaVpWgVgDbBXKfV+0vnpwCvAi0A88CNwVCk1NlU9+Z8YpqaU3rcjI8Tz3IoVK1i4cDonTow0W+a5576icdMu+Pn60qxp84L7uguRRx4/NtCp4z5OnAinalV7gk50w8WlRLplIyP1FQvyYtF4SQyFKBh5kRg+RdNsdEqps0qpqJSHgNopXo8EPlBK3VBK3QFmAn6apln2vTIY9MXGPvtMX8hQ5KnAwAD69894nOHAgfX5849T/HnmT5avXMb+A/uIjDT7vSVEoWNnZ8XKVa0oW9aWq1djGO4XhMGQfuNA6dJpk8KnrB1BiKdSoU0MNU2brGnaWk3T/tY0TWmaFpJBWStN097RNO2cpmmxmqZd1TRtnqZp6XaAaJo2SdO0SCAMaAQsSjpeBqgKnEpR/Fcg+bjl/PwzHDmir2adtL2QyBuPHj1ix47d9O//ZLmgoKBrvNx7JUFB14zHvL2f5a+z57Gzs8NgMEiCKIqk6tVL8b+l+gDjbdtu8dln57J03bFjMH++PvlMCFF8FdrEEPgI6AxcAu5nUvY/wHzgLDAafdzgv4DN6bX0KaU+UUqVBuoD3wC3kk4l9w0+TFH8QapzltG6tb4lQc2akM5ekSLntm7dSp06FahTpzwGg4E5cw7RqZM/zmWb0andd3z6yQEMBgN165andm1XnB3L0LVzV5ycnCRBFEXSSy9VYfwEfZ25GdNPc/DgnQzLnzwJS5fqe7mvWZOzez5tw5aEKGh59T1WmGcl11JK/Q2gadppwDG9QpqmPYueDK5XSvVPcfwysBDwAVald61S6i9N034D/IGu6JNRQJ+Ycjfp8+SFXCz7G9/KCkaO1DcIzsV2QiKtdet+wNvbg5s3Ixk6dCMhIXEcPHiYZs2a8c8OHRny9hvs3hrMijU+eHvXZcOGtfj4+FC3jgfBF85z4uQJHkY85M8zf3LmrzPUr/cszWUMoijkZs9uwLGj9zh8+C6vDTnGiZPdqFgx/R0hGjeGGjX07SubNs3+vWxtbYmJicFBxkcLkW+Sd8nJrULbYpicFGbBIEADFqQ6/i0QDbyWyfXWQJ2kez4ArgKNU5xvgt5qeDXtpQXM3l6SwjwWExPD1q3bcXCw5bnnvsLNzYtff/3DuNfp8yNGsLdVW8oeu0qjegspVcqOLVu2ERMTg7W1NfU86/Pa4Nfp2rkrzk7OGAwGTie1IO6TFkRRiNnYWLHi+1ZUqFCCW7diGfr6cRIT029xsLGBf/wDpk5Nf8vOzLi6unL9+nWio6Ol5VCIPKaUIjo6muvXr+OaB8vbFYlZyckthkqp6umc24He2ueQzpIyR4C6SqkKSa8dgVeBDejdxQ2AAOCwUmpUUpnpQF+gF/qs5E3AsUIxKzm1P/+E0FBZZCwXNm7cSL9+/XByKsXixV8zZMiQNGXiDh3iXvv2rAemONoT8SiGjRs3Gvc9TWYwGDgffJ4TJ4N4GKGPRrCyspIWRFGo7dlzmxd7HkQpeG9KPWbObJAv94mIiCAsLIz4+Ph8qV+Ip5mtrS2urq4ZrhVZrJarySQx/BNwVUql2RpE07Q16IlgCaXU46TJKBuBZoAd+uSTQGCGUio66Rob9PGKyesYrgXeVkrFpqrbsonhnj1PBvu8/DK8+GLBx1AMTJr0Lnv37mL16rXUqmV+v+O7nTvzeN8+brRvz5sxkXTu3I1PPvk03bKSIIqi5v33z/D+7LNoGmz+qR3du1fK9JqwMDhwALy9ZalVIYqCpykxvATYKqWeSefccvQEr2xSN3FexlQaiGjcuDHWSd27o0aNYtSoUXl5G/PCwvQVaOPiYPJkMLMZushYfHw8NjY2GW4PBhC3fz/3OnUCwOXYMayaNs10LIfZBNGzPs2aNceptOwCIAqHxERFr5cOsmdPGOXL2xF0ohvu7ubHA/79N3z+OcTGQp8+Mh9OiKLgaUoMs9ximMcxWb4r+f59ffmaZ5/NvKzItbsdOvD44EFK9OqFy+bNWb7OmCD+EsTDh5IgisIpLCwWr+a7uHkzltatXdi1uyO2tukPQ4+JgY8+0v8+7dkT+vYt4GCFENn2NCWGWR5jmMcxWT4xTM+lS3D3LrRsaelIip24vXu516ULAOVPnsQuaYJKVkmCKAq7w4fv0K3rARITFWPH1uWTT58zW/bGDT0xbNzYbBEhRCHyNO18cgL9OVqkPKhpWkn02cUn8/Pmo0ePZnM2Wo/yVUQEfP01+PvD6dOWjqbYsevUCbs2bQB49P772b7eysqKep71eG3Q63Tt3A1n56RZzGdPs2Llcvbu30tEZERehy1ElrVtW4H3P9Ann8yfH8yPP143W7ZKFUkKhSiOikOLYUPgd2BDqnUMR6OvY/i6Uur7fIip8LUY/v03zJunb03Qu7fMVs4Hsbt2Ed69OwAVTp3CNhe/Gc21INbzrE9zaUEUFmIwKF555Qhbt9ykTBlbjgd1o0aNdDeRMpGQAKdOgZdXAQQphMi2It+VrGna60C1pJej0WcRz0t6HaqUWpGi7CLgbfRlaLYC9dB3PjkCdFZKGfIhvsKXGAL89hvcuwdJXZ4ibymluNu6NfHHjlGyXz/KrV+f6zoNBoNxoewHD/U5UpIgCksKD39MC69dXLkSTbNmZdl/oBMlSphfQ/XBA72z4u+/YehQSGpYF0IUIsUhMdwPdDBz+oBSqmOKstbAGGAUUB1915IAYLpS6lE+xVc4E0OR72K3bye8Z08AKvz+O7aNGuVJvZIgisLkRFA4HTvuJT5e8c9/1uLzhea3PHnwAD74ACIjoU4dGDdOlrARorAp8olhYVdkEsP4ePjvf/Wpg9WqZV5eZEopxd1WrYgPCqKktzfl1q7N0/rNJ4j1aN7UK8MFTIXIS19+cYF33vkNgO9XtmLAgKpmywYH63sqDxig75QihChcJDHMZ8mJ4bBhw+jfvz+9e/e2dEjp+/57OHRI/0k9dixksIizyLrYLVsITxrDWeHPP7FtkPe7RUiCKCxNKcWgQcdYH3gNR0cbjh3vSt26hfgPYSGEWZIY5rMi0WKolL5DSmAg1Kih9+/IXst5QinFXS8v4n/5hZIDB1Luhx/y7V56ghjMiZNBkiCKAvfwYTzPt9rNxYuPaNDAmSM/d8HePms/R8LCIA+2bhVC5AFJDPNZkUgMk126BOXKQdmylo6kWIn98UfCX34ZNI0Kp09jW79+vt7PmCD+EsSDB5IgioLz228PaNd2D3FxBnx9q/PNtxlPPTYY4McfYft2ePttyIcGdSFENj1N6xiKzNSqlTYpDAqCO3csE08xUaJ3b2ybNAGlePThh/l+PysrKzw9PBni8xrdunSnTJkyGAwGzpw9w4pVy9mzb49x6z0h8lLjxmX4/PMmAPj7h7B8WUiG5cPDYe9evdNi1SpITCyAIIUQeUJaDHOoyIwxTM+ePbBmDZQvDxMmQJkylo6oyIrZuJH7/fqBlRWuZ89i4+FRYPc2GAxcuBhM0EnTFkRPj3o0b9YcZyfnAotFFH9KKYb7nWDlylDs7a058nMXGjQw/3/s5EnYsgXeeAMqptmwVAhR0KQrOZ8Vqa7k1DZuhG3bwN4exoyB6tUtHVGRpQwG7jRpQsIff2D/2muUXbEi84vymCSIoqBERSXQuvUe/jobQV2P0hw71hVHR/NTkBMTZVizEIWFJIb5rEgnhkrpA4CaNQN3d0tHU+TFBAZy39tbbzU8dw6bOnUsEof5BNGT5s28JEEUeeLs2QhaP7+b6OhEBvpUZfnylmiyaKEQhZ4khvmsSCeG5iglq9LmgDIYuPPccyScPo39sGGU9fe3aDySIIr8tnJlKH6+QQB88UVTRv0j82Wwzp/XOyrefBPs7PI7QiFEapIY5rNilxjeuAErVsDIkeDiYuloipyYNWu4P3AgWFvjev48NoVgvUg9QbyQlCDeB1IkiE29cHaWBFHk3Jv//IXvvvsbOzsrDh3qTJOm5lc9OHcO/vMf/fNOncDHp4CCFEIYyaxkkXVRUfDFF/pGp598AtHRlo6oyCnp7Y1N/fqQmMijjz6ydDiAngR61PVgiM8Qund9gTJlymIwGDj711m+X72CPft28/ChzGIWOTP/P4157rkyPH5sYNCgozx48Nhs2bp19cUR7OygcuUCDFIIkW3SYphDRXpWcmoGg74I9u7d0Levvn2eyLbo1at5MHgw2NjgGhyMTY0alg7JRHotiJqmUc+jnt7FLC2IIpsuXnxEyxa7iIxMoM/LVVi7trXZ8YZ37+qTUWSGshCWIV3J+azYdSWDPgiobl3TcYYRESALJ2eJSkzkzrPPknD+PA7/93+U+eYbS4eULoPBwMVLFwg6EcR9SRBFLq1ffw2fgUcB+Oyz5/j3mLoWjkgIkR5JDPNZsUwMU7t/HyZPhtq14ZVXoGZNS0dU6EV//z0PXn9dbzW8eBGbatUsHZJZkiCKvDJu7G8sWnQBGxuNvXs70er5zMcpR0XB9ev636JCiPwnYwxF7h07ps9UvnBBFiPLInsfH6zr1IGEBB598omlw8mQlZUVdet4MNhnCC90e4GyZcqilOLsubP6Tip7ZQyiyJqPP2mEl1c5EhIUgwcf5e7duAzLBwfD7Nnw5Zdw714BBSmEyBJJDIV5TZpA9+5Qrx4884zpudOn4bH5weZPK83GhtJTpgAQ/d//knj1qoUjylxmCeLuvbt5+PCBpcMUhZidnRWrVreibFlbrl2LYbhfEAaD+d6ouDh48ABiY+HIkQIMVAiRKelKzqGnoivZnCtX4OOPoVw5GDFCuphTUQkJhHl6knjpEg5vvkmZL7+0dEjZoncxXyTo5HHu33/SxezpUQ+vZs1xdpYtFEX6tm69Sd+XDwMw+/0GTJpUz2zZdev0iSht28ryqUIUBBljmM+K1azk7Fq+XP8z38oKpkyR3VPSEb10KQ+GDwc7Oyr+/TfWbm6WDinbJEEUOTFlyp98NuccVlawY2cHOnRwtXRIQggkMcx3T3WLocEA+/ZBfDz06GF6TnZPAUDFxxPm4UHi5cuUGj0a54ULLR1SjkmCKLIjIcFA924HOHz4LpUqlSToRDcqVSqZ6XVK6R9WMsBJiHwhiWE+e6oTQ3POnIGdO8HbG6pWtXQ0Fhf13Xc8/L//gxIlqHj5MtZFfGVf8wmivtVeGUkQRZIbN2Lwar6LO3fi6NixAtu2d8Da2vwfjFFR+sZLZcrIrihC5BeZlSwKlsEAa9fqe1/Nm6ePLn/KOQwdivUzz0BcHI/mzLF0OLmmT1Kpy+CBQ3ihWw/KltUnqfx17i++X7WC3Xt38UAmqQigShV7lq9oiabB/v13mD37TIblV6yAU6f0joizZwsoSCFEuiQxFHkjPl6fvWxlpe+cUqKEpSOyOM3ODsf33gMgaskSEm/dsnBEeSN1gliubDlJEEUaXbpUZNr0ZwH4+KO/2LHD/P///v31HxlNmkhngxCWJl3JOSRdyWbcvq3PVra1fXLs11/hzh19+mGpUpaLzQJUXBxhdeqQePUqpcaNw3nuXEuHlOeSu5hPnAwi/H44oHcxe9T1xKu5dDE/zRITFb17HWL37tu4uNgRdKIbVas6pFv2zh0oX4vvCqMAACAASURBVF6GKAuRX2SMYT6TxDCLHj+GadP0Rctq1IBJkywdUYGLWryYh2+9hWZvj2tICNauxXOWplLKuJOKJIgiWVhYLC28dnHjRizPP+/C7j0dsbWVziohCpqMMRSFQ1gY2Nvrn7drZ3ru8WN9GmIx5zBiBFZubqiYGKLmzbN0OPlG0zTq1K7LYJ8h9Oj+pIv53Hm9i3nXHulifhq5upZk5crnsbbWOHr0HlOn/JnpNUrpGy9FRBRAgEIIE5m2GGqatjeP7qWUUl3yqC6Le6rXMcwupfRJKbVrm3Yxr10Lv/wCXl76IKNi7NGiRUT8619opUrprYbly1s6pHwnLYgipXnzzjN50h8ArAtsTZ8+6a/tmZAA33wDv/8OjRrBm29K97IQeSHPupI1TTPkUUxKKVVsNtyVruRciouDd9+FmBj9p/9bbz05l5Cgf5TMfO2zokLFxnK7Zk0MN2/iOGkSTh9/bOmQCoz5BNEDr2YtKFNGEsSngcGg6N//CFt+uomzsy3Hg7pSs6ZjumW/+w5OnABnZ5g8GcqWLeBghSiG8jox3A58mot4JgHdJTEURnFx8PPP8Ntv0KoVPP/8k3N//KE3GfTrB507F5vmgkeff07EmDFojo5UDAnBysXF0iEVKD1B1NdBDA+XBPFpFB7+mJYtdhEaGk3TpmXZf6ATJUum/bUQFQUbN0Lfvk/dfDUh8k1eJ4b+SqnhOQ1G07SlwFBJDEWWJG+5p2n6lnvFZP0KFRPD7Ro1MNy+jeOUKTh98IGlQ7IISRCfbieCwunYcS/x8Yo33qjFwkVNLR2SEE+FvJx88jtwJZfxXAX+yGUd4mnRtKned/Tyy8UmKQTQ7O1xnDgRgKiFCzEk7R7ytNEnqdRh8MAh9Ojek3LlkiepnOP71SvYtWcnDx7IJJXiyqtFOT77rDEAS5ZcIiAga79eYmLyMyohRDJZriaHpMUwn0VFgYODaTeywVDkN1I1REURVqMGhjt3cJw+HadZsywdksWZa0GsW8cDr+ZelC0jA8yKG6UUgwcfI3DdNRwdbTh6rCseHun/HFUKDh+Gdetg7FioVq2AgxWimJB1DPOZJIYF7PFjmDsXWrSALl2K9LjDR599RsTEiWjOzvpYQ+k6BfRk4dLfFwk6EcS98HuAJIjFWUREPK1a7ubixUc8+6wTR37ugoODTZpyd+7AjBmQmKh3IEyZUqS//YWwGFnHUBQvq1dDaKi+xM3vv1s6mlxx+Oc/sSpfHvXwIVELF1o6nEJD0zRq16rDoIGD6flCT1zKuaCU4nzwOVau/p6du3dy/8HT2f1eHDk52bL6h+cpWdKKM2ci+Pe/TqVbrkIF6NEDXFz0+WiSFAqRv/K0xVDTtDpAIyBUKXUyzyouhKTFsICFhsJXX+nb7U2YUOR/O0R+8gmRkyejlSmjtxo6O1s6pEJHWhCfDkv/d5l//EP/dfHtt80Z5lsjTZmEBL3FULZgFyLn8q0rWdO0V4CRwCyl1PEUx6cCM4Hk39irlVKvZTPuIkMSQwuIioLYWL3pIFl0NISHg7u75eLKAUNkJLerV0eFh1P6/fcpPXWqpUP6f/buOzzKKu3j+PdkZpIQIARIQm+h99ACAkoXG74uCOqKsK6oa0HXuqsi6trALrr2tQBiQRHEgggKokAIVVroPSEhkJCeTDnvHydtIKEMmcwkuT/XlYvJ85yZuWeFzS+n+i0TEPewJi72lIDYjj69Yqgrm9xValprbvl7HLNnH6BGDQu//zGMrl3lFyUhyps3g+E84FIgUmudXXCtC2bVsQNYDXQGwoCxWut5Hn0CPycnn/iJWbPMfogjR8JVV4H19DlK/irj2WfJmDIFVbcuDQ4cIEB+wTgjCYhVV1aWg/79l7J9Wzrt2tdm1aph1K5tK7N9UpL56tatAosUopLzZjDcByRorQeUuDYNeAi4WWs9UykVBWwDftVaX+7JB/B30mPoB44fhylTzGrlNm3MkkVL5dkq05WebnoNU1Op/dxz1H7kEV+XVClIQKyatm9Pp/9FS8jKcjLuumbMmtUXVcqUkZUrYc4c80996lT3AQQhRNm8ufikPnDklGuDgExgDoDWei/wO9DRg9cX4tzUrw+PPgpdusCtt1aqUAgQEBpKrfvuAyDr5ZdxZWb6uKLKwSxSaVOwSOWKEotUdvDp57NZ/PNPpFbTPSIrs44dQ3nr7d4AfPnFId57d2+p7UJDwW43hydt316RFQpRPXjSY5gHfKu1HlvwfSBwEliutb6sRLvZwBitdY1yrNdvSI+hn9uyBTp18vt9D11paabX8ORJak+fTu2CDbDFuSvqQVy7huPHU4CCHsQ27ejTW3oQK5u77lzH++/vJTAwgN9+G0rPXqf/91u4EDp0gLZtfVCgEJWUN4eS9wNZWuvOBd8PBxYDT2itny7Rbj5wkda6wfmX7/8kGPqxdevMWcsdO8Itt4Cf//dJf/JJMp96ioCICCL37SNADof1yJkCYu/efahXt56PKxTnIjfXycUDf2HTpjRatarJ6tjh1K0b6OuyhKj0vDmUvBzooJR6WCnVDXga0MCiU9p1AQ578PpCeE5rWLzYPD5wwIw3+bla996LCg3FdewY2e+84+tyKq2iIeZxN5gh5vrhZoh51w7mfP4pi3/+iROpJ3xdpjiL4GALn39xEaGhVvbty2LSpDjO1oHhcpkvIcSF86THsB0QB9QqvAQs0VpfekqbeOAdrfWd5VSrX5EeQz+Wl2dWK/ftC127+rqac5L++ONkPvMMAZGRptcwJMTXJVV6Wmv27ttLbFxsUQ8iULQPovQg+rdvvjnMdeNWAfDCC935533tSm13+DDMnGn+uQ8bVpEVClG5ePVIvILtae4HIoE1wIta65wS9+8AbgMe01r/cN5vUAlIMKyE/PisZdeJEyS1aIHOzCT01Vep9c9/+rqkKkMCYuX14AMbmTFjF1arYunSwVzUP9ztvtbw1FOQmAiBgebovPDwMl5MiGqu3IKhUmog8IeWQ5XdSDCsZFJS4PXX4frroXNnX1dTqvRHHyXz+ecJaNiQBnv3ompUyXVbPlMYENfExZIiAbFSyM93MXTIr6xZc4KmTWuwJm4E4eHux5/s3AmvvgqXXmq2MrWVvf2hENVaeQZDF5AMzC/4WqK1dpRjrZWSBMNKxOEw3QrJycWbnzVs6OuqTuNMSSG5ZUt0Vhahr79OrXvu8XVJVZIExMrl4MFsYvr8zIkT+Vx6aQO+XXgxAQHu+xumpoIsPhfizMpz8ckbQC5maPh74JhSapZSaoxSSiZCCf9ntcLo0ebP4cOhgX8ulLeEh1PzrrsAyJw+HZ2b6+OKqialFK2jWnP9uBu44rIrCa9vxh537trBp5/N5qefF3HihCxS8RfNm4fw0ccxACxenMT06fGntZFQKET5Oec5hkqp3sAY4BqgPWYlci5mq5p5wEKtdZqX6vQ70mNYCSUmmp7CUk5T8BfOY8dMr2F2NnXefLMoKArvKbsH0ZykUq+e9CD6gylTNvPC9HgCAmDRT4MYPDiy1HYOB8TGQv/+fv1PXYgK5+3FJx0xIXE0EI0JiQ7MVjbzgAVa60QP6q40JBhWAU4n/PorDB7sV2csn3zoIbJeeomApk1psHs3Kijo7E8SF6woIK6NJSVFAqK/cThcjLx0OStWpNCgQRBr4kbQqJH7PNykJHjnHUhIgAkTYMCAMl5MiGrIq8HQ7QWUakFxSOyHGZ52AbGYkDhfa73ngt7ED0kwrOS0NntcrFwJvXvDpEl+073gTEoiuVUrdE4Odd5+m5r/+IevS6pWygqIbdu0I6Z3H+rVk8N5fSUxMYc+vX8mOTmPSy6JYNFPl2C1Fs+Iys4204nT0qB9e7jvPr/5Zy2Ez1VYMHR7MaUigb9gQuJgwIbpTXxIa/1Kub2RH5BgWMnl5ZmljPv2QWQkPPywX52QcvL++8l69VUszZsTuWsXKlBOfqhoWmv27Tfb3EhA9B+//prMZSOXozX8+5GO/Oc/Xdzub9kCBw/CyJGV7vh0IbzKJ8HQ7YWVqgNcjQmKK7XWL3nljXykMBhOnDiRMWPGMGrUKF+XJM5XZibMn28WpvjZhtLOxESSoqIgN5c6771HzVtv9XVJ1ZYERP/z7LPbeOrJrQB8u3Agl13WyMcVCeH/fB4MqzrpMRTedvLee8maMQNLy5ZE7tyJkg3afEoCov9wuTSjrlrBzz8nUb9+IGviRtCsWdm/3DkcfjWNWAifkGDoZRIMq6gDB6BxY7/YJdeZkGB6DfPyCPvf/wj5+999XZKgMCDuY01cLMdSjhVdb9umLX16x1BfAmKFOHYsj5g+P3PkSA59+9Zj6S9DCAx034HNbod582DvXjNbRIaWRXVWnvsYulFKOc/xK1cpdVgptUApdc2FfBghvE5rWLYMpk2D2bPN9z5madyYkEmTAMh49lm03e7jigSYfRCjWkVx3djrufLyq4gIjwBg1+5dzPn8UxYt/pHjJ477uMqqLyIiiNmz+2GxKGJjTzDlsc2ntfnlF/O1fz/8UCUPZxWi/HlycKw6x69AoDEwCvhaKfVReRQshFdoDXFx5jzltWvNnod+oPa//w2BgTj37iXn0099XY4oQQKi7w0YGM6zz3UF4LXXdjJ//hG3+8OGQdOmEBUFffv6okIhKh9P9zF8AfgH8BYwBziA2aKmJfBX4E7gfeA1YAjwIhAB3KS1nlMehfuaDCVXQRkZ8N//wrhx5ieJn0i74w6y33kHS5s2RG7fjpLJUn5Jhph9Q2vN6NF/8P13idSpYyN2zXCiomoV3U9Lg9BQCPCkG0SIKsRrcwyVUjcD7wKXaK1Xl9GmL7ACuFNr/YFSqh+wEnPO8qXn9YZ+SoJhFaW132185jh4kOQ2bcBuJ2zmTEJuusnXJYkz0Fqz/8A+YuNiOXasOCC2ad2WmD4SEL0hNTWfvjE/s39/Nj16hLH8t6EEB8uEQiFK8mYwXAuc1FoPO0u7pUCY1rpXwffrgOZa64jzekM/JcGwmrDbzQkpwcE+LSPt9tvJfu89LO3aEbltG0pm0fs9CYgVa23cCQYP/pX8fBe3396aN97sWWq7XbvM1qV16lRwgUL4mNcWnwAdgKPn0O4o5kzlQnuBUA/eTwjf2LcPnn0WPvvM15VQ65FHwGrFuXMnOV984etyxDlQStGqZRTXXXs9V11xFRER5nfi3XvMHMQff/qR48dlDmJ56d2nHi++2B2Ad9/dw+efH3S773TCRx/BSy/5zfoyIfySJ8EwD3M+8tlEF7QtFAiUmVCF8Ds//GAWoaxeDfHxPi3F2rIlIRMnApD59NNop9On9Yhzd8aA+IUExPL0jztac+3YpgDc8Y+1xMenF92zWMwAAMCePVCiE1cIUYInQ8kLgKuAp7TW/ymjzRTgP8C3WutrCq79WfB+XS+sZP8gQ8nVQFoaPPOMWdo4cqTPZ6879u4luV07cDqp+/nn1LjuOp/WIzxjhpj3syYuluRjyUXX27RuQ0zvvtSvL0PMFyI93U6/fkvYvSuTTp1DWblyGCEhZsFWdjbMmgVjxkB4uI8LFaKCeXOOYXdgFRAE7AS+wKxK1kALYBxmuDkP6K+13qiUag7sB97SWt993p/GD0kwrCby8iAoyNdVFEm9+WZyPv4Ya+fORPz5J0qWWlZaEhC9588/0xg4YCm5uS4mTGjJB//r4+uShPA5r558opQaCswGGmICodttIAmzNc2SgvYRQDcgXmt9hCpAgqHwBcfu3SS3bw8uF3W//JIaY8f6uiRxgSQgesfHH+3jttvWAvD++72Z+LdWpbZLSTHb2QQGVmR1QlQ8rx+Jp5SqAVwLDAKaFFxOAH4D5mqtsz164UpCgmE1lJcHCxfCpZeanyQ+kjphAjmzZmHt2pWIjRul17CKOFNA7NM7hvD6MvZ5PrTWTLoljlmzDhAcHMDvfwyjW7cwtzZbtsD//gddusDf/+53O1UJUa68OZQcCugzvWh1IMGwmsnKguefNzPWu3eHO+7w2U8Rx44dJHfqZHoNv/6aGqNH+6QO4R0SEMtPVpaDAQOWsm1rOm3a1mL16uGEhppz0LWG11+H7dtN23vvhU6dfFisEF7mze1q0oAlnhbmS0qpIKXU+0qpvUqpTKXULqXUP09p01op9b1S6oRSKkkp9bxSSrpkqruaNaFFC/M4O9v0HvqItX17alx/PQAZ//kPnvb6C/9kVjG3Yty113HVFaOIjIgEYPee3Xz2xRx+/OkHUo6n+LjKyqFmTSuffXYRNWta2L0rkzvuWFf070UpuOUWaNYMbr0VOnb0cbFC+AlPegxPAgu11uO9U5L3KKVqAv8GPsHsq9gN+Am4R2v9hVLKAvwJfAdMBSILHs/RWk8/5bWkx7C6ycqCNWtg8GCfjznZt2/nWOfOoDV158+nxv/9n0/rEd4jPYgX7rPPDjJxQiwAM2b04B93tCm654eHHQnhFd4cSl4N5GqtB19QhX5CKfUhkKm1vkcp1QkTDGtqrfMK7v8NeEJr3eqU50kwFD6VesMN5Hz+ObYePQhftw4lP92qNK01Bw4eIDYuluTkpKLrraNaE9O7L+Gy/8oZ3X3XOt57by+BgQEsXz6EXr3r+bokISqUN4eS3wcGKqV6eVrcuVBKPaKUmlsw7KuVUvvP0DZAKXWfUipeKZWrlDqklHq5oIfwTO9hBQZiwiCYFdWnNQNaFsytFMJv1JoyBZTCvmEDed9/7+tyhJcppWjZoiXjxoxj1JVXExnZAIA9e/fw2Zdz+GHR96SkyBBzWV56OZro6DDy813ccMMqUlPzT2uTlgaLFsmpKKJ683S7mhnAeGA68A1woLCHrdwKU0oDJ4D1QC8gXWvdsoy2rwP3FNTyI9ARmAysAIZrrV1lPO8toA8wQGudXxAUtwILgCeABsB8oDvQTGt9uMRzpcewOktLMyejhIXBFVf4rIwT48aRO3cutt69CV+zRnoNqxHpQTx/e/Zk0q/vEk6etHPVqMZ8/XX/on8z27fD22+b6cMTJsCAAT4uVohy5rUeQ6WUE7gLqAM8B2wHspVSzlK+HB7WD9Baa11faz0Csw1OWfV0xoTAeVrr0Vrr97XW9wP3A0OA68t43suY3sLLtdb5AFprBzAK6ILZtHsR8Clmr8bUC/gsoqr54ANYvtx0L6T67q9G7ccfB8C+di15ixb5rA5R8U7tQWwgPYhn1bp1Ld7/wGx2/d3CBF57bWfRvebNi/eyP3rUF9UJ4R88mWNYau9bWbTWF7yiVym1BahVWo+hUuoZ4DHgEq31ihLXg4HjwHKt9RWnPOc1YBgwVGt9xhMzlVJ3ARO01n1PuS49htVZfDy8+ip07Qp//SvU8918pRNjxpA7bx62vn0JX7VKeg2rqcIexDVxsSSd0oPYp3cMEeERPqzOvzz04EZef30XFoti6dLB9B9geld37oTMTOjZ08cFCuEFXt/guiKdJRj+BAwHQk4dzlZK/QG001pHlLg2AxgKDCktFCqlumFWLOdiehxnYoLhz6e0k2BY3R04ULyFjQ/ZN27kWI8eANRbtIjgkSN9XJHwJQmIZ5ef72LY0F+JjT1BkyY1WBM3gogI/zn6UghvqE7BcDMQqbVuUMq9L4GxQFDBHMIWmDOb84CSw9wrtNaXFzznaeBOIBiIB6ZqrU+b2S/BUPiTE9dcQ+6CBdguuojwP/6QXkMhAfEsDh7MJqbPz5w4kc+IEQ1Y+N3FBAS4/7txuSAhAZo29VGRQpSj6hQM9wA2rXXzUu7NBG4C6mqt08q5ptpAenR0NBaLBYDbbruN2267rTzfRlQmJ09CnTo+eev89etJ6WU2Cqj/888EDR/ukzqE/9Fac/CQWaSSlFQcEKNatSamT/UOiIsWJXL1qN8BePKpzjz6aPHRJ8ePw0cfwcGDMHUqyFoeUdlVSDBUStXBrOqNwKxMXunxi535fcqlx7Cca5IeQ2EcOwZz58Lu3fD00+aUFB84PmoUed99R+DAgdT/7TfpNRRuJCCW7vHHNzN9WjwBAfDjokEMGWJOmtm6FWbMMG369YObb/ZhkUKUA2/uY4hSqk7BxtDJmJNDZgOTSty/UymVoJTq58nrn6cEIFwpVdoEkSZASnmHQiHcHD4MmzaZk1F8uJ9g7SeeACD/99/JX7bMZ3UI/6SUokXzlowdPY6rr7qaBg3M79J79+3h8y8/4/sfv+dYyhnX4lVJTzzRmUsuicDlgpvGryYxMQeAzp3NIUeDBpn1ZUJUF55sV1MTWAb8DbOFy4+cvjH0IqAhcM2FlXdO4jCfI6bkxYJVydHA2gqoQVRn0dHQoQP07w8XuvDDbodt20wPpN3ufm/bNli5EhITS31qYO/eBBXsqZjx1FMXVoeosiQgurNaA5g1uy8NGgSRnJzHTeNjcTjM5hvXX29CYZCsSxHViCc9hg9iNnyeDURpra86tYHWei+wE7P619u+wOwz+M9Trt8KhGD2IfSayZMns3DhQm++hfB3SsE998DEiRc+x3DzZnj9dViyxOydUdJvv8Enn5j7Zag9dSoA+cuXk7d8+YXVIqo094D4f6UExO+qTUBs1KgGs2b3IyAAfvvtGE89tRUo/QzlSjAtX4gLYvXgOWMxw7e3nuW0k4NAZ4+qApRSNwGFe4FEAIFKqSkF3x/QWs8C0FpvVkr9F7hbKTUP+AFz8sk9wHJgjqc1nIs33nhD5hgKKFiAdME6doSAgt/Xjh4141mFEgr2eW/Vyv05mZkwfTp07kzgoEEEjRxJ3k8/kfGf/xC0dGn51CWqLBMQW9C8WXMOHjpIbNxqkpKS2LtvL3v37SWqVRQxffpW+TmIgwdHMvWJzjz5xFamT4unf/9wLr+8UdF9l6t4P/sbb/RhoUJ4mScbXGcDP2mt/1Limgv4WGv99xLX5gCjtdbBHhWm1DJgUBm3l2utB5doa8H0GN4GtARSMD2JU7XWmZ68/znUJ4tPROm0Nj9B6tWDvn3P3HbPHhP0Akp03u/YYY5hqFHDvW3h3hngvn/G6tVm+STAAw+Qn5JCSsF5XqHTphF05ZVYO3ZElVd4FVWaWaRykDVxsRxNKj4CJKpVFDG9Y4iIiPRhdd7lcmmuHrWCxYuTqFcvkDVxI2jePASAr76Cnwt2s739dtkEW1Q+XluVrJQ6Caws3Pev4FppwfA3oJPWukou8pdgKMo0ezasWAE2G/zrX9CsWentdu2CV16B9u3h1ls9X828ZYv5iXXkiOk5tFhIGTGC/CVLipqooCCsPXsS2KsXtp49sfXsibVTJ5TN5tl7iipPa82hQweJrWYB8dixPGL6/MyRIzn07VuPpb8MITAwgNRU+M9/IDQUJk0q+5+1EP7Km8FwDdAcaKm1zi245hYMlVJ1MRtJr9daD/HoE/i5wmA4ceJExowZw6hRo3xdkvAX27ebeYD168Odd0KTJqW3e+0109ZqhYcegpYtL+x9HQ7zWoBj1y7SH34Y+5IlODPL6DS3WrFFRWEbOBBbv34mMHbpgpKZ9qKEsgJiq1ZR9K2iAXHVyhSGDVuGw6G59962vPhSNGAOO2rUCAIDfVygEB7wZjB8GJgGzNBa/7Pg2qnB8G3MsO7dWuu3PfsI/k16DMUZbdgA7dq59wLa7aYXsVBeHsycaeYVDhxY/jXk5cHatTjXrsUeEoI9JQX7+vXY16/HuXdv6c+x2bA1boytSRNsffpgu+EGbN26oWrUMMHT4YBgj2aHiEquugXEV1/dwb8e/hOAL768iL/8RY4/EZWbN4NhCGaLmA7AKmAe8BJmC5u5mMUpg4DNQExV3UNQgqE4by+8YELVyJFm+BjMfEQfbETtmjcP+5dfYk9MxN64Mfnr1+M8dRV0IYsFa8eO2Nq2xZaUZILjY48REB1d3GbrVnPyS926JuiKKqu6BEStNddeu5KF3yYQGmolds0IWreu5dZm1y7IyYFu3XxUpBDnwasnnyilmmBCYD/MVjGq4E8KHq8DrtFaHznvF68kJBiK87JvH0ybZh5ffjlcUxFbfJ6DvLyiTdpc6enYN2zA/vrr2PfswZ6WhuPwYbPo5VRKYW3fvmi+ou3QIWwnTxLQqpU5P6yQ3Q6PP24mZl16KfTuXXwvIcF81axpeldlcUylorXm0OFDxK5ZXWUDYmpqPn1jfmb//myio8P4bcVQgoPN39Ply+Hzz82w8qOPQoPTzt4Swr+cazD0ZLsaCgJff6XUZcAVQBRgAQ5hNryeryvDIcxCVJQ6dWDIEIiNNccp+IsS8wkDQkMJGjSIoEHFmwG4srJw/Pkn9nXryP/9d+xxcTgOHACnE0d8PI74eHLmFO8IZalfH9vWrUWBMbBlSwJSU80eH3mn7G61cSMsWGAev/mmezB85RVzkkx0NJScv5uVZfZ3DA01czdlWNtnlFI0b9acZk2buQXEffv2sm/fXlq1bEVMn75EVuKAWLduIJ99dhGDBv3Kxo1pPPjARt78rzmTPCzM/M7kcJh1XxIMRVVxQWclV2ey+ER45NR5hpWQzs3Fvnmzma+4bp35c/NmyC991oilfn0zZ3HYMGwjRmDr2RNLgwbmdJclS0yXyxtvuD/pwQchIwMuvhjGjy++Hh8Pr75qHj/wgOlpLLR0qVkd0LAhFJwAYwrWkJICISFmC6AAj04CFWdR2IO4Ji6WxKPFp/NUhYD4ztu7ueeeDQB8MrMvN9zQHDB/fdu2hRYtzvRsIfyDV4eShQwlC1GSzs/HsXUr+QWLW+zr12PfuBFyc0ttH9C4MbboaGwdOhDYvj22K68koHFjVOF8y9mzIT0dunSBSy4pfuKaNfC//5nHTz5plogWevNNc3JM06Zm+LpQdjbcd595PHYsDB9efO/oUXPEYIMGJlBKaLxgVTEgaq0ZPz6WuV8eomZNCytXDadjx1BflyXEeSm3YKiUt81cCgAAIABJREFUuh/YorVe7GkxSqlLgS5a61c8fQ1/I8FQiDPTDgeO+Hj3nsUNG9BZWaW2D4iMNEPQJfZatLRoURwWwQTNY8dMaGzXzr339ZNPTI9is2Zmm6BCKSnw2GPm8cSJ5kzrQj/+CPPnm8evv+4+NF24F2XTpu4biotzcsaA2LsvkZGVKyBmZNjp128Ju3Zm0qlzKH/8MYyaNd1nY2VlwYkTsseh8E/lGQxP27z6fCmlPgImaK2rzOxyCYZCnD/tdOLYtau4V7EgMOr09FLbq3r1zFzFEoHREhWFOp+evZwc2LTJ/NTu1Mm9l/Hjj2HVKjNn8cUX3Z93770miA4eDDfcUHx9715YuNCswL7ySrNfZdEH9M0qc39WlQLi5s0nGdB/Cbm5LsaPb8H/PuxT9IvLwYPwzjtmzuGUKeavlBD+xKuLT4QQwhPKYsHWoQO2Dh3gr38FQLtcOPftK+5VXL+e/HXr0CdOoE+cIH/JEvdTXEJDi1dDFwRGa9u2ZR/5V6MG9OtX+r1x40zwO7UXMy+veBg8LMz9XmIibNtmHpecywgmGRw+bLbsKTk3UmvzVQ2Hqk9dpFIYEPft38e+/fsqVUDs2rUOb7zRk1tvXcvs2Qe4+OIIbv67Obt8/344fty0W7HC/M4gRGV0rj2GmZjzhz0VDtSsij2GsvhEiPKntcZ58KB7z+K6dbiSk0ttr2rWNHMWSx7517EjynoBv/vm5UFamgmWJbt/4uLMEYSpqfD880WnzQBm3mNiInTvfvpw9hNPmLmMY8dW670etdYcPnKY2DWrK20P4qRb4pg5cz/BwQGs+H0Y3buHobWZGtuwoZnGKh3Hwt+U91ByedBVMRjKULIQFUNrjSsx8bSeRdeRMrZLDQ7G1r178dY5vXph7dwZ5c3zzL7/3uzNGBUFw4YVX//zT/jvf83jBx80S1kLzZtntuCJijI9mNVEWQGxZYuWxPTpS4NI/93/JTvbwYD+S9m6NZ02bWuxevVwQkNtMpNA+LXyDIblthBfa32gvF7L1yQYCuEfnElJZmPuEoHRuX9/6Y1tNmxdu7r1LNq6dUN5ez/Ew4fNXMbERLjlFvejEl96yRyh0aKF2Sm5kN0OH35oVjL06OE+N7IKKQqIcbEkJiYUXff3gBgfn07/i5aSmelgzLVNmTOnn/tCKczsgexs9//cQviKbFfjZRIMhfBfruPHsW/YYLbPKQiMzt27S29ssWDt3LmoV9HWsyfW7t0JqKif5vPnFwfDkj2GBw7Ac8+Zx5MmQZ8+xfe2bzcT2po0gZYtq0Q3VWUMiJ9/fpAJN8UC8NprPbjzrjZF9wqPQj98GB55RPZiF74nwdDLJBgKUbm4Tp40PYsl5i06duww3TqnCgjA2qGD2wIXW3Q0ARW51HT7dpg1ywTAU/ds/OADM9cxLAymT3d/Xny82V6nlvu5vpVFZQuIk+9ez7vv7sFmUyxfPpTefeoB8Msv8MUXps2QIXD99T4sUggkGHqdBEMhKj9XZib2TZvcts5xbNsGTmep7S1t2xb1Ktp69sTWowcB9ep5t8jsbNPdVHJF87PPmv1ROneGe+4pvp6RYeYwgtlix5+OXzxPZwyIvfvSwE/OoMvNdTLokl/YsCGNFi1CWBM3grp1A3G5zJ7rWpvZA5U0p4sqRIKhl0kwFKJq0jk52P/8031F9JYtZs5fKSytWrn3LPbsiSUiwrtFulxmo2+HwwwnFyq5yOW++6BDh+J7331nToZp0wauvbbSDD8XBsQ1cbEk+GlA3Ls3k74xSzh50s6VVzVi3rwBKKXIzTUnPlbDXYqEH5Jg6GWyXY0Q1YfOy8O+davbAhf7pk1mIlkpApo2de9Z7NULS0UsHsnNNRtw798PQ4e6T2x75RXYscMEyalTi69rDcuWmVXRzZr5bYrRWnMk4TCxa/wzIC5YcISx164E4Plp3XjggfaltnO5/PZ/YlHFSTD0MukxFKJ603Y7ju3bi3oV89evx7FxIzo7u9T2AQ0bnn7kX7Nmp61k9ZoFC8z8wxYt3Ce8JSTAU0+Zx+PHw8UXV0w9HiorILZo3pKYPjE0bNDQZ7U9/NAmXnttJxaLYsmSwQwYGO52/48/4Lff4P77ISjIR0WKakuCoZdJMBRCnEo7nTh27HAfht6wAZ1R+v8HB4SHn3aKi6VVq4oLi2DSysyZ5vGpi1zmzjXLart0gREjKq6mc1AUEONiSUjwj4Bot7sYNnQZq1cfp3HjYOLWXkpEhEmAGzfC22+bdr17w623Vnh5opqTYOhlEgyFEOdCu1w49+wp2pC7MDTq1NRS26uwMGw9ehT1LAb27ImlbdvzOx/6vArU5mSWPXugb1/3uYdTp0JSkpmreN99xdcdDjh61AxL+3iuor8FxEOHsonp8zPHj+czYkQDvl14MRaLwuWCN94wa4buuMNM9RSiIkkw9DIJhkIIT2mtce7ff/qRfymlnzyqatUyYbHEULS1ffsLO/LvbFwu+OwzMy+xXz/3c6F37DBzFuvUMSmnVSvv1XEezCrm1T4PiD/9dJRRV60AYOoTnZkypRNgFphnZ0N4+JmeLYR3VHgwVEq11lrvOcP9oVrrX8rlzfyABEMhRHnSWuM6csStV9G+bh2uxMRS26saNbBGRxf1Ktp69cLaqRPKZiv/4k5dMfHNN7BokektfPll96M91q+HunV9uvF26QGxBTF9+lZYQJw6dQvTnt+OUvDjoksYOrT0xTFyjJ6oKL4IhhnA/Vrr90+5HgRMB+7WWnvx19uKJcFQCFERnImJpx/5d/Bg6Y0DA7F16+Z+5F/XrqjyXumQkgJbtpgtc8aOLb7ucsFDD0FmpullvPnm8n3f81S4zc2RhOLztCsqIDocLi6/7DeWLz9GZGQQa+JG0LhxDbc2iYnwySfmYBvpRRTe5otg+AJwP/ADMElrnayU6gnMApoA92qtPymXN/MDEgyFEL7iTEkp7lUs6Fl07t1bemOrFWuXLqZXsbBnsVs3AkJCyr+wQ4fgmWfM4wkTYMCA4nu7d5v7nTtDZGT5v/cZ+CogJibmENPnZ5KS8rj44nB+WjwIq9X0vJ48CU88ATk5Zr3PI4/ISmXhXT6ZY6iUugT4BAgB5gK3AiuBiVrrMn7FrZxkH0MhhD9xpaZi37jRrWfRsXNn2Uf+dezo3rMYHU1AefySm5ZmNtKOjoaSrzdzplkBHRgIr74K3pwfWQZfBMRly5K5bORy05n6cAeefbZr0b2vv4bFi2HUKLjyShlSFt7ls8UnSqloYBUQBKwH+mmtHeX6Jn5AegyFEP7OlZFhwmLJI/+2bzdDvqdSCmu7du57LfboQUBYWPkU8/zzZuPtrl3h7ruLr9vt8OGH5np0NHijJ/MUpQXE5s1b0Ld3DA0blv9G5M8/v50npm4BYP6CgVxxhXkPl8t0pLZrV+5vKcRpfNVjeAvwCrAX+Ap4FNgM3KS13lVub+QHJBgKISojV3Y2jsLzoQu20HFs3Wq2oCmFpXVr9yP/evTA4smEOK3NZtpOJzRvXny95DF+t90GvXp58Kk8U1EB0eXSXD1qBYsXJ1G3ro01cSNo0aLm2Z8oRDnyxRzDb4ErgJeAx7XWdqVUB2A20AF4SGv9drm8mR+QYCiEqCp0bi72LVvcj/z780/Izy+1vaV5c/dh6F69sHh6JN3KlWZMNS/PrHAuOdHuxx8hLAx69vTqBLwjRw6zZu0aDh85XHStvANiSkoeMX1+5vDhHGJi6vHLr0MIDHTfm9JuN4tRevSo0HwsqglfBMN9wASt9YpTrluBJ4GHtdaB5fJmfkCCoRCiKtP5+Ti2bTO9igVD0Y5Nm9A5OaW2D2jcuCgoFp4THdCkybmd4uJymQ2zGzcuvma3wwMPmMBYQUeFeDsgrlqZwrBhy3A4NJMnt+XlV6Ld7r/5ppmeabWajx4VdcFvKUQRXwTD2iXfSCnVAAgqXHSilOqntV5dLm/mByQYCiGqG+1wmCP/SvYsbtiAzswstX1ARMTpPYstWpxbWDxyxCxSyciAO++E7t2L7x09ChYLRESU0yc79a1LCYjNmhPTpy+NLjAgvvbqTh5+eBMAn39xEaNHNy26t22bOR0lKsp85Joy2izKkc9PPlFKrQL6VKW9C0uSYCiEEAVH/u3aVdSrWHTk38mTpbZXdeu69SraevbE0rp16Uf+OZ2wdSt06uS+ivm992DdOrP1zeTJXlvO642AqLXm2mtXsvDbBEJDrayOHUGbNrWK7sfHQ+vW4I19ykX15i/BMEZrbfHKG/iYBEMhhCid1hrn3r3uR/6tX4/r+PFS26vQ0OIj/wr3WmzXDmUp5cdHbq4ZZ3U4Tt9Eu3C1dTmfK30k4Qhr4mLLLSCmpeXTN2YJ+/Zl0b17GCt+H0pwcNk/KuV0FFEeJBh6mQRDIYQ4d1prnIcOuQVF+7p1uJKSSm2vQkKwRke79SxaO3Uy50MnJsKqVWZ4uXXr4ietXQtffQWDB8OQIeW+YKU8A+L6dalccskv5Oe7mDQpirfeLn21yerVpnP0H/8wo+dCeEqCoZdJMBRCiAvnTEhw61nMX78e1+HDpTcODjZH/pXca7Fz5+Ij/954wxzVFxwM06ebP72gvALiu+/sYfLk9QB89HEMN97Ywu3+unVm1BzgkkvgxhsvvHZRfUkw9DI5+UQIIbzDmZx8+pF/+/eX3thmw9a1qwmJoaHY0tOxDR6MKpmi7HbYtw/ati3XMdkyA2LvvjRqdPaAqLXmppti+fKLQ4SEWFi5ajidOoUW3S/cwSc52ewJ3qZNuZUuqiEJhl4mPYZCCFFxXCdOYN+wgfwSC1ycu8o4N8FiwdqpU3HPotWKLS6OgIYN4aGHoG7dcq3tSMIRs0jl8KGia+caEDMy7Fx00VJ27sigY6dQVq4cRs2a1hL3IT0dmjQp15JFNSTB0MskGAohhG+50tOxb9jg1rPoiI8v/XxowFq/PrbLLisOjNHRBKSkQKtW5bJgpbSA2KxpM/r26XfGgLh580kGDlhKTo6TG29swYcf9Tnjlj4Oh0+OmhaVXLkFQ6XUJR7W8DbQQYKhEEKIiuLKzMTx559uPYuOrVvN1jelsISGYmvWDNvllxM4cqTZmLtevQuqwZOAOPOT/UyaFAfAO+/04u+3lL67dXIyzJgBo0ebA2GEOFflGQxdgCfdigrQEgyFEEL4ks7Jwb55s/uK6M2bzdzDUlhatnRf4NKzJ5bIyPN+34TEBNbExXLolIAY06cvjRs1Pq39rZPi+OST/QQFBbDi92FER4e53Xe54IknTDi0WGDKFPfDYoQ4k/IMhvvxLBgCoLVu5elz/ZkEQyGEqLx0fj72tWuxf/kl9o0bsefkYN+0yaz4KEVA06YElthn0dazJwGNGp3TKS7nGhCzsx0MHPALW7acpE2bWqyOHU5oqPtO19u3m6PzLr0Urr5a9jcU587ncwyrOgmGQghRtWi7HUd8PPZffsH+wQfYs7KwHz1a9vnQDRqc3rPYvHmZYfFcAuKOHRlc1G8JmZkORo9pymef9Tvt9ZKTwYMOTFHNSTD0MgmGQghRRX3wAcTFgVLop5/GkZLiforLhg3o9PRSnxpQv77bCS62nj2xREW5hbuzBcQvvzzE+BtXA/Dqq9HcdXfbM5arNZw8CWFhZ2wmqjkJhl4mwVAIIaqo1FRYtMjsE3P77cXXtYZ330W3bYszIgL79u3Y168vOidap6aW+nKqTp3isFhwTrSlbVsSk46WGRCnPXeUd97Zg82mWLZsKH1iSl8Q43LBxx/Djh1mJ57w8PL8H0JUJRIMvUyCoRBCVDO7dsFLL5nH48bBsGFFt7TWOA8cOP3Iv2PHSn0pVasWtuhobL16caJ7NzYG2TicVhwsmzRuykf/s/LTojxatAghds0I6tULPO11Sp6O0r073Hln+X1cUbVIMPQyCYZCCFHNbNoEX3wBaWnwwgtQq1bxPbsdbO4LRbTWuI4ccetVtK9fjyshodSXP96xA9tHX0NS4+ItbfbtCeT772rTsWML5s0bQECA+3xDrWH+fNi6Fe67D2rWLL+PK6oWCYZeJsFQCCGqIa0hMdF9nxinE5580myUfcUV0LDhGV/CefSo+5F/69fjPHCg6H5KVCu2X3EZyR07FF1zxR8jVDXj5tdvK7Wk/HwoPDJaiNJIMPQyCYZCCCEAWLXKTPQDuOEGGDz4vF/CmZJSfIpLQc9issvJtisuI7lTx6J2tbck8JepD1On4Zk34d6yBRo1gvr1z7sUUUVJMPQyCYZCCCEA04P43XewZw88/bT7kHJmpvuQ83lwpaVh37CBg+vWs+JoCllRZog5+GgK3ToNpO/1l5b6vI0b4d13zZHQDzwg4VAYEgy9rDAYTpw4kTFjxjBq1ChflySEEMKX8vLcx3Nzc+HRR80Q8zXXQLNmHr+00+nkq4deIqW5BVdgIAF2O/X25TLu5X9jsbgfMPbNN2ZRtdUKd98NHTuW8aKiWpFg6GXSYyiEEOKMfvoJ5s0zj2+/vVwON1779TI2blhKTuMIAGruPMLwm2+jeffWRW20hgULoG1b6Nz5gt9SVBESDL1MgqEQQogzOn7cdN3t3296DkueYJKS4vGmgxnHT/L149PI6GKGlgNPZtDC1pzLHrypHIoWVZUEQy+TYCiEEOKcuFwQEFD8fVoaPPYYtG4N114LzZt79LLfP/chhyxHsdc2cxhDtxxl7POPEVLn9D1r0tNh5kyzNkbmHFZP5xoMA8q6IYQQQohyEHDKj9qffwaHwxxXkp/v8cte+ejfGTHkGkJ2m30R07s0ZM6059m48A+3drm58MorsHkzvPiiCYlClEWCoRBCCFGRRo6E4cOhWzdo08b93smT5/VSrWM6MXH6M9TbnoZyOMhpFsnK3SuZ+/DLOJ1OwKyH6drVtO/cGWSQS5yJDCV7SIaShRBCXBCt3ecdJiaa7W5iYswq5rCw83q5Pz75gW371pAbafY4rLX9CFfcO5kGbZqitdnGpnv30zswRfUgQ8lCCCGEP1Pux9uxYIE5RWX1asjOPu+XGzDxCsZMuotaW44AkNmxCQs++5Bf3/oKpaBHD/dQqDUcPXohH0BURRIMhRBCCH9wzTUmvfXv737kHpg5ieegXtMIbn5rOk0TFNbsHPLqh7HFdZhZd00lLzu3qJ3W8NVX8MwzZu6hEIVkKNlDMpQshBDCK05dxbxrF3zwAYwaZULjOY4Fb/tlHasWfU12S3N2c8i+owy4ahwdBkVz5IgZtdbaZNDHH5ch5qpOhpKFEEKIyujU8d5588wWN59/fl5LijsN7cX4J6cStuUYuFxkt2rIr3E/Mf+Jt2jSBO64AyIjYfJkCYWimPxVEEIIIfzZxRebg4+HDnVfkHIOI35BIcHc9NbTdFZNCDqRhiOkBocaOPjorn/TPCKFJ5+EevW8V7qofGQo2UMylCyEEKLC2O1miLnkWcwbNsDvv8OYMafPSSxF4s5DLHrjTTI7NgEgOPkEnaNi6D/hiqI28fEQGws33mjOWhZVhwwlCyGEEFWFzeYeCh0OM8S8ZYvZvdpuP+tLNGrXjAmvPUfDfXlY8vLJjazH+rR45tzzDA67g0OH4K23YOVKeO+9c+qQFFWQBEMhhBCisnE4oEMHs+XN5Zeb4HgOLBYLY198iIui+lLjcDLaauV4h1A+eXgKGQfiadTIvGRMzOm76YjqQYaSPSRDyUIIIXwuMREiItzHfWNjzVF7AwaccVVJVmoGXz32POldzKplW3omTVyNaH7lzXTv7u3CRUWToeRSKKWClFLvK6X2KqUylVK7lFL/PKVNY6XU10qpFKXUcaXUAqVUU1/VLIQQQpSpUSP3UJibC3PnwuzZ8PbbZ3xqzbq1mfjWc7TJCCUwPQN7aC32h2Ww8Z1HyEotzg0ZGSZ/iuqhWgVDwAocBS4FQoGxwCNKqetKtHkLsAGtgGZAFvB+BdcphBBCnL9jx4qHlWNizukpl//rb1x26Vhq7koAIL1rIz576QXWfbOcvDx480144QXYvdtbRQt/Uu2HkpVSHwKZWut7Cr7/E5iutf604PsrgXe11k1PeZ4MJQshhPA/drsZTh4wwH2i4Pbt0KIFhISU+jSnw8GXD0zjRFQILpuVgPx8asS7WO18ABVg4eKLYfz4CvoMotxV+qFkpdQjSqm5BcO+Wim1/wxtA5RS9yml4pVSuUqpQ0qpl5VSNc/yHlZgIPBnicuvAOOUUmEF4e8m4Pty+EhCCCGE99lsMHCgeyg8edIMLU+ZAuvWlfo0i9XKDa9PoVd4Z4KTjuMKDCSrWzAxQY/SsfEBbrihguoXPuW3wRB4DhgK7AFSz9L2VUyg2wZMBuYC9wALlVJn+owzgJPAzBLX/gDqASeANKAd8G8P6hdCCCH8w8qVkJcHWVlQq9YZm/a7cSRjb7+H2lvM0HJOpybUsM7k1/9+UdRGa9nOpqry52DYWmtdX2s9Akgoq5FSqjMmDM7TWo/WWr+vtb4fuB8YAlxfxvNexvQWXq61zi+4FgD8DKwCagG1gSXAj+X3sYQQQogKdtllcPvtMHgwtG/vfu/48dOahzWuz9/emkbzJBvWrGzy69Zhe0AiM+96nNzMHBYsgA8/NLvmiKqlUswxVEptAWpprVuWcu8Z4DHgEq31ihLXg4HjwHKt9RWnPOc1YBgwVGt9rMT1cOAY0ExrfbjgWjPgIBChtU4p0VbmGAohhKjcjh6Fp56C6Ghzgkp4+GlNdqzYxO8LPic7qhEANfYfZeuB0WSH9WbAAJgwoaKLFp6o9HMMz0MfwAWsKXlRa50LbCy4X0QpNQMYzimhsOA5KcBu4C6lVHBBuJwMHC4ZCoUQQogqYcECc9Tehg1mmLkU7S/uzk3PPEXdrcdRTic5LRvSLuYXWh6fweWXV3C9wuuqQjBsDKRorfNKuXcECFdKBQIopVpggl4bYF/BXoaZSqmSQ8X/B/QseG4C0Bu42psfQAghhPCJa6+Fvn1h0CCzYrkMgcGBjP/vU3QJbEnQ8TQcNYKpNRS+e/JfHD+QVIEFC2+rCkPJewCb1rp5KfdmYlYV19Vap5VzTbWB9OjoaCwWCwC33XYbt912W3m+jRBCCOF9WruvYt6/HxYtgrFjoX59t6bJexL4/tXXyezUBICgYyfo1KwXYTGjyMyEfv0qsG5xzs51KLkqBMPNQKTWukEp977EbGIdVLjApBxrkjmGQgghqh6XC6ZNgwMHzJ6Hzz8PwcFuTZxOJ9889jrJkU6cwUEopxP77+nEhz7GyMutjB7to9pFmarTHMMEzHBxUCn3mmCGmcs1FAohhBBVlt1ujtoDs4r5lFAIYLFYuHba/QzseDE1DiahLRasg+rSq+YUQrK3Vmy9olxVhWAYh/kcbmf/FCwciQbWevPNJ0+ezMKFC735FkIIIUTFCQqCm2+GBx/ktNUlBw9CWvHMrG6X9+OvjzxKnS1J4HKR164x+xO+5btn5STZyqoqDCV3BTYB32itx5S4PhmzgfVNWuvZXqhJhpKFEEJUHw6H2drm5EkYPdr0Jpaw+JVP2Ze3n/w65mdi7S2JjHjwXxxKDpN5h37gXIeSrRVX0vlRSt0EFC6RigAClVJTCr4/oLWeBaC13qyU+i9wt1JqHvAD0BFz8slyYE7FVi6EEEJUQZs3Q3KyeVzKztaX3n8jhzfvZfEH75LVvgkZXRrxw4evsCN+EAfHDePaayGgKoxTVnF+22OolFoGDCrj9nKt9eASbS3AP4HbgJZACvAFMFVrneml+qTHUAghRPWyfTv89htMmgQFO3IAZsFKQepzOp3MffAFjrcIxBVoIyDfDuvt3P7hQ1itljJeWHhblVqV7I8kGAohhBBAbi489xwMHAhDh4LVDEbGfbmUjZuXk9vInKZSc8cRLp10O027Rvmy2mqrOq1K9ilZfCKEEKJa+/57SEqCr7+GTZuKLvcZN4zrJt9P7S2JAGS1b8L3C+ew+NU5HD7sq2LF2UiPoYekx1AIIYTADC9/9hnUqgUPPeS+UXaBhU+/z5GgFOy1aoLLhV51jC4TH2PopSE+KLh6kqFkL5NgKIQQQhRwOMxZy3XqFF/LyIA1a8zqZYuF3Su3sPzrT8lubfZIDD6QRO+LR9HjKlmyXBEkGHqZBEMhhBDiDD7+GFatgqZN4YEHICQER76dWfc8R1bnULTFgiU3j8hkC3959t6i42WFd8gcwwoicwyFEEKIU+Tlwd695nG9elCjBgDWQBs3v/ME3UJaE3QsFWdwEInNrcy891EObEnwYcGikPQYekh6DIUQQogzcDhg8WLo2xfq1y++npcHgYEcP5jMty+8QmbnJgAEpaRSy9mdvz51jY8KrtpkKNnLJBgKIYQQ50lrePttEw5vugnCw/nqkRkcC8/FUSMY5XQSui2N6199jMDgQF9XW6XIULIQQggh/MumTeYrPh6++w6Aa5+/hzbhQwjefxRtsXCya31mTXmCHSs2neXFhDdIMBRCCCFExWjXDi65BGrWhDFjii6PmNiHMQ9OIWxLMrhcZEc14pfVPzJv6js+LLZ6kqFkD8lQshBCCOGhrCwTDgtpDStWQL9+LHnnG/Zk7CS/rtn6JmhDAtc++TD1mtTzUbFVgwwlVxBZlSyEEEKcp5KhEMy2Np9+Ck89xfAxAxk1egLBW44AkNejMV+/9zqr5/zkg0KrH+kx9JD0GAohhBDlZMYM2LrVbJD91FNQowZHjzqZ88+XCeoXgCswkAC7g3p7cxj3yr9lz0MPyKpkL5NgKIQQQpQTlwuWLTPb2nTvXnTZnudi3fzf2PLnUnKaRAAQsiuBIeNvIapXWx8VWzlJMPQyCYZCCCGEly1dChs3knH5/zHvjf+R3tUcp2dLz6ChvSnXPD7RxwVWHjLHUAghhBCV14kTsGAB7NxJ7bmfMvGt5wjdUwuX88mHAAAYFElEQVRbRib20Nocqn+ST+54lKzUMjOO8IAEQyGEEEL4n5AQ6N8flILrrgOl+Ou0v2NlNME7zPF56V0b8tmL09mw4HcfF1t1yFCyhwqHkidOnMiYMWMYNWqUr0sSQgghqp5jxyAiwu1SRuxmFs7+hhNta6GtVix5+YQd1Fz30v2yMKUMMsfQy2SOoRBCCOEDR4/C009DWBgrIzqyNXUXuQ3MWcw1thzhynvvplH7Zj4u0v/IHEMhhBBCVD3LloHDAceP0/+qflz217uxrjVDyzldmrBw7sf88tZXvq2xEpMeQw9Jj6EQQgjhA4Vb22RlQcE0rvh4mD/1TerEZOEIqQEuF2HbTzDuxUcJCgn2bb1+QoaSvUyCoRBCCOE/HPsPs2vuD6w8tp/slg0BqLHvKP0uu5Yuw3r6uDrfk6FkIYQQQlQPDgfWWR/Rcfc6xteqSdjWFHC5yGnVkBUbfubLf7/p6worDQmGQgghhKjcMjLMEDMQ1L0LN/33P+htTQk8cRJHSA2Smrv46K5/ceLwMR8X6v9kKNlDMpQshBBC+BGHw8w9HDwYrFbsdpjz7mHyt75BbtcmAAQnn6BzVAz9J1zh01J9QYaSK8jkyZNZuHChr8sQQgghqjerFYYPN38CNhtMvL0BN4dZabjqIJa8PHIj67E+LZ6P//E0DrvDxwX7J+kx9JD0GAohhBB+7vvv4dtvAdjYJoa1qfvIaRoJQI2dCQwb/zda9e7gyworjPQYCiGEEKJ6u/hiiImBZs2IfuBm+o55BFYeBSCnXWN+WjqP75/70MdF+hfpMfSQ9BgKIYQQlUReHgQFAXDoEMx/8iNsbROwh5qf37W3JDLm6X9Tu34dX1bpVdJjKIQQQggBRaEQoFkzmDw8mMv/PEDN+EMAZHRpxOevvMSauct8VKD/kGAohBBCiOojKwvWraNFbcXEJhGE78wgwG4nt0kEcUfWMuef03E6nb6u0mdkKNlDMpQshBBCVFLp6fDll3DNNdjrhPPiPxYT3uQP8hrWB6Bm/BFG3v4PmnRu5eNCy48ciedlEgyFEEKIqsHhgLkzT5D7xzNk9moJQGBaOq1rtmb4vTf4trhyInMMhRBCCCHOgdUKN/Q7ys3WLFos3ootK5v8sFC2W5L4361TyMnM9nWJFUaCoRBCCCEEQFgYV7cIZljXSwjZkwgBAWT3iOTTp59ly+I1vq6uQshQsocKh5InTpzImDFjGDVqlK9LEkIIIcSFyM2FgwehXTviVufz+6vPYRtYB22xYMnJpcHxIMY8d6+vq/SIzDH0MpljKIQQQlRtqamw/Jl3Sa5zlLzwugDU2nqEKx+4j8iohj6u7vzIHEMhhBBCiAtQV6Vxjd7BNbsPU2vDPgAyOzdh/qx3WTTjWx9X5x0SDIUQQgghShMaCoMHExli4ebbbyRynwtLbh55EXXZrfYw6+4nyc/N93WV5UqGkj0kQ8lCCCFENZGUBA0aYLfDR8/GonK+JbdFAwBC9iYyaPSNtOnfxcdFnpnMMfQyCYZCCCFE9bRrWzar3nyOk53CISAAa1Y2jbLqcc2Tt/m6tDLJHEMhhBBCCC9o2ymECW89Qwd7JIFp6ThqhnAoMpf3Jv2btKNpvi7vgkiPoYekx1AIIYQQhzfv5cd33yW3UxMAgo+m0L3TJcRcP9zHlbmTHkMhhBBCCC9r2jWKkQ89h/23bALy7eQ2DCcuaROf3fc8TqfT1+WdN+kx9JD0GAohhBCikN0Oa75YyrYdy8ltFA5AyI4j9Bt7G50HtvZxdbL4xOskGAohhBDiVOnJacx7cjoZXRoBEHgyg5onWzB+2nif1iVDyUIIIYQQFSw0Moy/vfU84QdqYMvMIr9ObVKbn+CTOx8j+2SWr8s7KwmGQgghhBDl7Ibpt9KqydUE70wAIL1LA+ZMe45N3688p+e7XC7mzp2Ly+XyZpmnkaFkD8lQshBCCCHOxp7v4MsHniO1XW20xYIlLw/rdgs3vHwvtWtbynzesmXLGDJkCMuWLWPQoEEXXIcMJQshhBBC+Jgt0MqNb0ylR622BB07gTMoiLxoK3MefJQ//0go83lff/21258VRXoMPVTYYzhx4kTGjBnDqFGjfF2SEEIIIfzY8QNJfP3MK+T1MHseBh1Po11kVwbf/he3di6Xi2bNmtGpUye2b9/OwYMHCQi4sL48WZXsZTKULIQQQojzpTV8dPcb5EXl4KgRjHI6qbMjjXEvPkZQjUAAVq1axaBBg9i5cydt27ZlxYoV9OvX74LeV4aShRBCCCH8jFLw9/9OZlCPYYQcOIq2WEjrVJ9Zjz/BjEc3kp5uho+HDRtGy5YtGTZsWIUOJ0swFEIIIYSoYJ2G9mL8E1Ops/UYuFzkRDXCVu8nZj/wFl999RVjxowBYMyYMXz11VdU1AivDCV7SIaShRBCCOGp9u3bs2vXrtOua62xWq0kJCQQERHBsWPHaNy4MQ6HA6XUae3btm3Ljh07zvp+5zqUbD2vTyGEEEIIIS7YjBkzmDBhAjabjTfeeIMmTZoU3atbty4REREAREREsG3bNlJTU4vuHzlyhMmTJ2O325nx/+3dfZQU1ZnH8e+DEVDZCMYEA0lAzQmoGyUBjBKPDgZl1agEBZQT1CC6GxZcknX3RI/muOTlD3cVVzF7RF1edDXGHVBZQdREWNFEJa4OShIVARUEX0IUhAGEZ/+4t6Fsqme6h67unp7f55w6PX3vrVu3qHuGZ6rq3nvzzWVtl+4YtpHuGIqIiMi+WL9+PRdffDHLli1j5syZnHPOOa3u8+CDDzJ+/HgGDx7M7Nmz6dmzZ1HH0uATERERkRp22GGHsXDhQq666irOP/98Jk+eTHNzc2rZrVu3MmnSJEaNGsXVV1/NggULig4KS6FHySIiIiJV0qlTJ6688kpOOeUUzjvvPLZv385tt922V7kpU6awcOFCnn76aQYNGpRdezKrWURERESKMnjwYLp3707//v1T8/v160ePHj0yDQpBgaGIiIhI1b3yyissX76ckSNHArBx40amTZu2e9DJyJEjaWpqSh3JXE4KDEVERESqrLGxkUGDBtGnTx+WLl3KcccdxzXXXMOAAQN46qmn6Nu3LwMHDsx8smsFhiIiIiJV1tjYyIgRI5g6dSpDhw5lzJgxbNiwgdGjR9PQ0MDUqVMZMWJE5oGhpqtpI01XIyIiIuWwatUqjjjiCPr06UNzczOzZ89m+PDhu/MXLVrERRddxAEHHMCaNWtYtWoVffv2LekYmq5GREREpB2YN28eAP379+fFF1/8RFAIMHz4cJqamnYPTJk7d25mbelwgaGZdTGz283sdTPbbGavmtmUvDKb87YdZtZUrTaLiIhI/erfvz/Tp09vcW7Cnj17smDBAqZPn15w5HI5dLhHyWZ2EPAjYDbwOnAssAi4wt3vK7BPE/BLd/95Ik2PkkVERKRd0KPkAtz9I3e/1t1fc/dd7v4C8DDwzbTyZnY8cDQwq4LNFBEREam4mg4MzewqM7s/PvZ1M1vdQtlOZvYDM/ujmTWb2ZtmdkO8Q9jSMT4FnAQUelR8KbDQ3de1+URERERE2oGaDgyBnwOnAiuBja2UnQbcCKwAJgP3A1cA882spfO8GfgAmJOfYWYHAhcAd5TcchEREZF2ptbXSj7S3V8HMLOXgG5phczsGEIwONfdz0ukryIEfhcA96TsdwPhbuGp7r49perRwBbCo2YRERGRulbTdwxzQWERLgQMuCkv/XZCYPfd/B3M7CbgdOBb7v5egXonALPd/eMi21E3ZsyYUe0miJSF+rLUC/Xljqca17ymA8MSDAZ2Ac8mE929GXgh5u9mZjcDwwh3Ct9Nq9DM+gFDgP9s7eDz589vU6NL3a/Y8sWUa61Mvf4Cauu1qvXjl6PeWuvHxZZVX66vY9djXy5XOfXl9nPsctV7/fXXV/z4tf4ouVi9gPfcfVtK3lpgiJl1dvftZtaH8Nh5G7DKzHLlnnT3MxL7XRrTXmnpwJs2baKxsZGGhoaSG13qfsWWL6Zca2V27tzJpk0FR7O3W229VrV+/HLUW2v9uNiy6sv1dex67MvlKqe+3H6OXa56N27c2KZrnnb8YutpN/MY5t4xdPe+KXkrgf3d/UspeXOAcUAPd/9LGdvzeUAjlUVERKQ96eXubxfKrJc7hluAzxXI65ooU07rCXcqN5e5XhEREZEsdCPELwXVS2C4DjjazLqkPE7uTXjMnDbquM083GotGHGLiIiI1JhWnyfXy+CT5wjncnwy0cy6AgOAZdVolIiIiEh7Ui+B4X2AA1Py0i8DDgT+q+ItEhEREWlnajowNLNxZnaNmV0DfBY4OPfdzMblyrn7cuBWYKSZzTWzCXHy6huBJaRMbt2RlbLUYCz/DTN73Mw2mdmHZvaImQ2oUHNFMu2zZtbLzOaY2btmttXMlpnZqExORDqMWumzZtbFzKaa2Soz22ZmK+P/ofuX4TQlIV7ntG2vsQhm1s/MHjCzjWb2kZk9aWanFqj3YDO7xczWxiV/Xzaz71tiWpVE2TYtD/yJOmp5VLKZLQZOKZC9xN0bEmX3I9wxvBzoC7xHuJP4Y3fXAJEEM3Pgz8DzwEDgw7TR3rHsCcBiwrQ/02PyJMJgnyExKBfJVFZ91swOIbxq8jnCH5JvAWMJv3fGu/vMDE5HOoBa6bNm9gBwLmFO3t8CJwLjCYs3XLLvZyo58Zo/CeRPOLnD3e9LlDuSMO/yx4SFOT4gPOH8a+AMd388UbYzsBT4GnAL8AfgDOA7wL+4+3V5bfh3wnLA84CFwFGEKfqeBIa5+65WT8TdtXWwDTgi8fNLwOoWyj4LfAj0TqT1jmmPVvtctHWMLas+C1xPeA3l7ETafrGO9wlTZFX9/LW1v60W+ixwZix7Q14dN8T0IdX+d6qnLf6bziqi3K+AncCARFo3YA3wJ+JNu5g+MdY7Oa+ORmA70CeRdgxhsY/GvLKTYx1jizmPmn6ULNnwIpcaNLMvE1aNud/d1yb2XwvcDwwzs8OyaaXIHhn22bHASnefnyi7k/CX+SGE/1hFSlYjfXZs/MxfLjb3fa/lYmXfmVlnM+tWIO8g4Bxgsbu/kEv38GTzDuArfHK1trGE6fZuz6vqJmB/YEwireTlgdMoMJSW5Drnb1PyfkfogAMr1xyRVhXdZ+Mk9b1jelrZZH0iWcmyzw4G1rr7m8mC8fs61L+zcD4hCNtkZu/EdwMPTuQfC3Sh8PWGeF3MrBPwdeD/PCzxm/Qs4e5g/vUuenngQuplHkPJRq/4uTYlL5fWu0JtESlGKX1W/VtqQZZ9thewosBx1wJfKLKNUpxnCXd5XwM+Tbh7Owk4xcyGxLuCpVzDHsABaWXdfZuZvc/e17uo5YFbOgkFhtKSA+NnWidrzisjUgtK6bPq31ILsuyzBxYomyuv/l1G7v6NvKQ5ZtYE/Az4h/hZruudK1/K9c6VaTEw1KNkaUluGcEuKXlZLTUosi9K6bPq31ILsuyzWwqUzZVX/87evxICsbPi93Jd71z5Uq53ss6CFBhKS9bFz7THabm0tNvhItVSSp9V/5ZakGWfXVegbK68+nfG3H0H4TocGpNKuYYbga1pZc2sC/AZ9r7eh8a8tLqLWh5YgaG05Ln4eWJK3gmE4e+/r1xzRFpVdJ9197cJv1RPKFAWtJymZC/LPvsc0NvMvpgsGL/3Qv07c3Fp3i8AG2LScsLj3kLXG+J18TDn4PPA11KCveMJMVz+9d7n5YEVGEpB7v4aoSONMrPcC7PEn0cBv3H39dVqn0i+NvTZe4EjzezsRNn9CPN+/QVYUJGGS4eVcZ+9N37mLxeb+67lYsvEzD5TIOsnhPEc82H3tDTzgQYzOy6xfzdgAvAqnxxVfC/hvcDL8+qdQpgg+1eJtLIsD1zTK59INiwsJ9gnfp0MdCZMeAqwxt3vSpQdAjxBmF3/lsQ+PYFvuvuLFWm0dGhZ9dn4y/z3hEcyNxLuxlwINAAT3P3OjE5J6lyt9Fkzmw98G7iTPSufXArc7e7jkLIws2mEO35PAG8QJqw+ExgKPAMMdfetseyXCcHfDmAaYSLzy4CvAme5+6JEvZ2Bp4HjgJsJK5+cSVj55Kfufm1eO24hjISeR/gj4SjCSihPAae6Vj7RlrYRll7yAtvilPInAr8GNgObgEXA16t9Hto6zpZlnyW8e3MXYRnNZsKjmzHVPmdt7XurlT5LGHTwU2A14RHm68C1wP7V/jeqp42w7OAiQqDeDHxEmDvwaqBrSvmjgAcJd3m3EJa9G1ag7u6EpRLXxWu4ghD8WUrZ/YB/JKygsi2250ZKWMVJdwxFREREBNA7hiIiIiISKTAUEREREUCBoYiIiIhECgxFREREBFBgKCIiIiKRAkMRERERARQYioiIiEikwFBEap6ZeRu2WXHfhvh9cXXPom3M7JKUcxuUV+a6RN5bcYm0QvWdlldX36zPIR53Ssp5VOTYIlK8T1W7ASIiRZidknYYMJywwsB/p+QvzbRFlbeSPef0XgvlegOnAY8UyL+kjG0qxQr2XMfzgYOq1A4RaYECQxGpee5+SX6amTUQAsP30vITniUsP7Uli7ZV0NJWzhNgGTCIEPztFRia2acJa6z+AfgSFQzO3P1R4NHYjoZKHltEiqdHySJS19x9i7v/0d3fqHZbKuAZQtB3rpl1T8m/ADgAmFXJRolI+6HAUETqWqF3DM2sb0xfbWadzOyHZvaymW2N7+ndaGYHxrI9zOymWHabmb1qZj9s4ZhmZheY2aNm9l7c5w0zu70C79XNAroSgsB83wN2AnflZ8Q2vxr/TU4oVLmZzY1lJibSFse0BjM72cwejue9y8xG7PspiUilKDAUEYF7gKnAKsLjzoOAHwCNZnYI4U7cGOA5wnt+fYEbzOzq/IrMbH/CO4/3AicR3q17iPAu5ATg+fzBI2V2FyH4+15eu/oBJwCPuPvb+Tu5uwO3xq8T8/NjHb2Bs4FNpASXwCjgCcJj6seAXwM72nQWIlIVCgxFpKPrAwwAvuLu33b3c4FjgfeBvwGWAC8Ch7v7KHf/FpC7C/aj3F3FhJ8AI4H/jXWeHPc7CpgM9AB+aWaZvOMdg75FwPFmdlQiKxcozmph95nAZmC0mR2akv+3hHfT57j7ppT8icD33f2r7n6hu5/m7g+XfBIiUjUKDEVE4Ap3X5f74u5vAnfHr30IwU5zIv9hoAn4K8JgDwDi3cUrCMHVKHd/K3kQd58OPAwcCZyRzakAIcCDOAI5Tl8zDvgz4e5lKnf/gHAnsAswPpkX74ReFr/+okAVj7n7jDa3WkSqToGhiHR0O4DfpKS/Fj+XuXva9DCvxs9eibShhMEdS9z9nQLHWxI/Tyy1oSV4iBAEjotB4emEdt7j7ttb2Xd6/Pw7M0v+HzGSMEXQYndfUWDfufvQZhGpAQoMRaSjW+/uH6ekb46fb6XkJfO7JtKOiJ9nFZp4G7g+lvnsvjW7sBj83QN8njClT+4x8syCO+3ZdwXwOHA44VF6Tu69w1v32mmPNSU3VkRqiuYxFJGObtc+5iflVhz5E/C7Vso+U0K9bTETmARMAU4Gmtz9+SL3vQUYRggGF5jZMbGOdcADLey3te3NFZFaoMBQRKR83oyfy4uYjDpT7v68mTURVkGB0uYu/B/CCO0z4vQ6fx/TZxS4uyoidUKPkkVEyudxwjuLwwpMMF1pMwijq99hz2CaVrn7LsIAk07APwHfBT6O9YlIHVNgKCJSJu6+gfAOXnfgITPrn18mTpY9wcx6VqA9t7r7oe7e093fLXH3OwnLCE4kjL6elzb/oYjUFz1KFhEpr38mjAAeDbxkZi8QHst2Bb5IWLe5c/zcUK1GtsbdN5rZ3cDlMamlQSciUid0x1BEpIzcfYe7jwHOJbyr1yv+PITwx/g9wHeAlVVrZPEei58vu/uSFkuKSF2wsAqSiIjUIjO7hDDCeHalB7SY2TzCKi8T3f0/yljvasLE4Ye7++py1Ssi+06PkkVE2oeTzGxW/Pm6rAMqMxsInEMYvDKnDPWdDoyNX9OW2xORGqDAUESkfTgybhBWJ1mdxUHM7A6gG3Am4XWjH7v7R2Wo+mjg4jLUIyIZ0qNkERHZLa7Osouwiskv3P3fqtwkEakgBYYiIiIiAmhUsoiIiIhECgxFREREBFBgKCIiIiKRAkMRERERARQYioiIiEikwFBEREREAPh/1gbj4DkbmIkAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x432 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(figsize=(10,6))\n",
    "\n",
    "# plot Tu15 tracks (for a Sun-like star!)\n",
    "ax.plot(blueTu15[\"time\"], blueTu15[\"Lx\"], marker=\"None\", linestyle=\":\", color=\"blue\", linewidth=2.5, alpha=0.6, label=\"__nolabel__\")#, label=\"fast rot. (solar model)\")\n",
    "ax.plot(redTu15[\"time\"], redTu15[\"Lx\"], marker=\"None\", linestyle=\":\", color=\"red\", linewidth=2.5, alpha=0.6, label=\"__nolabel__\")#, label=\"slow rot. (solar model)\")\n",
    "#ax.plot(greenTu15[\"time\"], greenTu15[\"Lx\"], marker=\"None\", linestyle=\":\", color=\"lime\", linewidth=2.5, alpha=0.5, label=\"__nolabel__\")#, label=\"interm. rot. (solar model)\")\n",
    "\n",
    "# plot approximated tracks\n",
    "step_size, t_track_start, t_track_end = 1., star_V1298Tau[\"age\"], 5000. # Myr\n",
    "t_arr = np.arange(t_track_start, t_track_end+step_size, step_size)\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track1) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:royal blue\", ls=\"-\", zorder=2, label=\"high activity track\", lw=2.2)\n",
    "#####\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track2) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:grey\", zorder=3, lw=2.2, alpha=1., label=\"medium activity track\")\n",
    "#####\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track3) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:red\", zorder=2, label=\"low activity track\", alpha=1, ls=\"-\", lw=2.2)\n",
    "\n",
    "# plot current X-ray luminosity of V1298 Tau as measured with Chandra & the assumed X-ray luminosity at 5 Gyr\n",
    "ax.scatter(star_V1298Tau[\"age\"], Lx_chandra, marker='*', c='xkcd:pale yellow', edgecolors='black', linewidths=1.1, s=500, alpha=1, zorder=4, label=\"__nolabel__\")#, label=\"today\"\n",
    "ax.scatter(5000., Lx_5Gyr, marker='*', c='white', edgecolors='black', linewidths=1.2, s=350, zorder=4, label=\"__nolabel__\")#,  label=\"at 5 Gyr\"\n",
    "\n",
    "ax.loglog()\n",
    "ax.set_xlabel(\"Time [Myr]\", fontsize=22)\n",
    "ax.set_ylabel(\"L$_\\mathrm{x}$ [erg/s]\", fontsize=22)\n",
    "ax.set_xticks([10, 100, 1000, 5000])\n",
    "ax.set_yticks([10**27., 10**28., 10**29., 10**30., 10**31.])\n",
    "ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:.0f}'))\n",
    "ax.set_xlim(left=4.9, right=6500)\n",
    "ylim = ax.get_ylim()\n",
    "ax.set_ylim(abs(ylim[0]), ylim[1])\n",
    "ax.set_ylim(10.**27, ylim[1])\n",
    "ax.tick_params(direction=\"in\", which=\"both\", labelsize=18)\n",
    "ax.legend(loc=\"best\", fontsize=15)\n",
    "#plt.savefig(\"./Plots_PAPER/Activity_tracks_v1298Tau_largelabels.jpg\", dpi=300)\n",
    "#plt.savefig(\"./Plots_PAPER/Fig8_largelabels.jpg\", dpi=300)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAHyCAYAAAAz0KKxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8U1X6+PHPSfc2aRNK6EJLyyYCAhYExCJUBioVUMRhF3Dc8IuoCDoDooIj8lOQGbevMsooCpRBnK9LVbTisMlIQWUpi2DpdKPQjXRf6HJ/f6RkWkhLy9J0ed6vV14k99x7znOSS/v05NxzlaZpCCGEEEIIIa49naMDEEIIIYQQoq2Q5FsIIYQQQogmIsm3EEIIIYQQTUSSbyGEEEIIIZqIJN9CCCGEEEI0EUm+hRBCCCGEaCKSfAshhBBCCNFEJPkWQgghhBCiiUjyLYS4iFIqSSk18gqOP6KUiriKIV1TV9LfltbXa+FKz5dGtlXv+92UsTiyzdZE3j/R1kjyLYSDKaXaK6U0pVRHR8dyOez94tQ0rbemadsdFNI1dWF/W0pfW0uCc+H7fRX+UNyulHrwqgTXRJRSc5VSPymlypRSay8oc1NK/V0playUKlBK7VdKRTkoVCGEHZJ8C+F4YUC2pmmnHB2IaBmUUs4toU5xzaQDy4D37ZQ5A6nAcMAHeA74WCkV2lTBCSHqJ8m3EI53I3Dgcg5USgUqpf6plMpSSv1HKfV4jbKFSqlPLtj/daXUG9XPe1aP+uVWf5V/Zx1taEqpbjVer1VKLat+vg7oBMQopQqVUn+s3m4bjayvner9nlJKHVJK5SmlNiml3Bvb36vV18vp74Ujr1fS3+p+nKwesTyqlLr7gmP/pJQ6BBQppZ5WSv3zgtjfVEq9ZqdP9X1ONet8tq72q/cPVkr9X/X7n6OUestOW9dXfzZTql//SSl1qrrO40qp39k55g9KqZgarxOUUh/XeJ2qlLqxRsznzy27/QJubOg5dUEcdb7/V7v/lzon6ztXNE37P03TPgNyLmxf07QiTdOWapqWpGlalaZpXwL/AQbU0ec6P58GnI9PV8dXpKyj7X5KqS3V+29VSpku2H9RdT0WpdQHdX0uqp6fa0K0CpqmyUMe8nDgA9gArLyM43TAz8DzgCvQBUgEbq8uDwGKAe/q107AaeBmwAVIAJ6pPnYEUAD0qN43CRhZ/VwDutVody2wrMZr274XbmtgO3uBQKAdcAx4pLH9vZK+Xml/Lzj2ivoLTKwu0wGTgSIgoMaxB4BgwAMIqC43Vpc7A5nAgDrev7o+p5p11te+E3AQ+CvgBbgDQy/4vPsDKcDY6u09sI7CBla/DgW62omtC5Bb3W4AkAycqlFmAXSXev8be05V778deLAB7/9V6z8NPyfr7QfW0e+1l/g54QeUAtfbKav387nE+5EE7KmuvyPWc+8XrN/kuQH/ApZc0J/DWM+1dsBuqv9fUfv/UL0/1+Qhj9bwkJFvIRzvcke+BwJmTdP+rGnaOU3TEoH3gCkAmqYlY/1lOL56/xFAsaZpe7AmpXrg5epj/wV8CUy9sq5cpCHtvKFpWrqmaWeBGKzvhz119reZ9JUGtlVnfzVN21xdVqVp2ibgN2DQBcemappWomnaaWAn1gQJYDTW6Us/NzLmmnXW1/4grInY05p1dLVU07QfatRzK/AFMEuzjrYCVGJNxHoppVw062jsyQsDqP4sC6rfi+HAt8AppdT11a93aZpW1cg+NeScujCOpup/Q8/Jy+rHeUopF6x/3H+oadqvdnap9/NpwPn4pqZpGZp1ytwuIE7TtP2appUBn2JNxGt6q/pcOwu8ZKe/cImfa0K0BpJ8C+FA1V+79gD2X8bhIUBg9dfWuUqpXKwjaX419onmv7/gplW/BmsSkXpBQpOMdQTrampIO2dqPC/GmpTYc6n+OrqvDW2rzv4qpWYqpQ7U6N8NQPsa+6de0N6HwL3Vz+8F1l1GzLY6L9F+MJCsaVpFHfU8Avxb07Rt5zdompYAzAOWAplKqX8opQLrOH4HEAEMq36+HWviPbz6dWM09JyqpQn739Bz8rL6Ud0XHdbz4Rww194+l/p8GnA+ZtR4XmLn9YXx1jx/k7G+DxdqyM81IVo0Sb6FcKw+WH85Hq+5USnlqpSKU0p5KKXuVEqttnNsKvAfTdOMNR4GTdPuqLHPZiBCKRUE3M1/E9J0ILj6F/R5nQB7F30WA541XvtfUK7V07/GtHMpl+rv1egrOKi/SqkQrCN8cwFfTdOMWL+mV/W0/RnQVyl1AzAW6yhnXeqKW2tg+6lAJ1X3hZmPVJf/tVblmhatadpQrEmVBrxSx/Hnk+9bq5/voGHJd32fR4M1cf+v5v8Le31RwN+xJqz3aJpWXte+dX0+DTwfGyu4xvNOWN+HCzXk55oQLZok30I41o3AUcBFKeVe/XDTNO0c1l98rwN/wP7I1V4gv/qCKQ+llJNS6gal1MDzO2ialoV1BPEDrL/QjlUXxWGdv/lHpZSLsq6bPA74h512DgDTqusfjTUZqikD67xMexrTzqXU29+r1FdwXH+9sCY/WWC9CBHrSGOdNE0rBT7B+ofGXk3TUurZvb64G9L+Xqzz6F9WSnlVn6vhNcoLsE59GaaUerm6jh5KqRFKKTes845LsE51sGcHcBvgoWlaGtZpDKMBX+r/ZuhS/Wqopuz/Ff2/UEo5V39r5gQ4VcdS84+Cd4CewDhN00rqqae+z6fR52MDPKqUClJKtcM6mr3Jzj6X/LkmREsnybcQjtUP6yoEJTUeR6vL/g08AMy191W3pmmVWH9h34h1NYNsYA3W5cVqisZ6MVh0jWPPAXcCUdXHvQ3MrGNe6BPV7eQC07GOttb0/4Bnq78ifuqCGBvTTr0a2N8r7avD+qtp2lFgFfAj1oSyD9aL0i7lw+p9LzXlpM64G9J+jfe/G9aLCtOwXoRXs45cYBQQpZR6Eet84pexvhdngA5Yk66LaJp2AijEmnSjaVo+1gvtdle3fVn9aiCtKft/Ff5fPIv1Z8VCrNONSqq3nR+xno31/8kZZV0FplApNd1OPXV+PldwPtYnGojF+rkmYr1gtJZG/FwTosVSmnZVvrETQlxFSilfrKNCW4EqTdNWODgk0UwppToBvwL+1QmraASl1C/AnzXr0n3iGlFKJWFdVWaro2MRwtFk5FuIZqb6K+CPgCeBV4F7lFINvtBKtB3Vc4bnA/+QxLvxlFK9sU7PuJwLnoUQ4rLIHc2EaGaql+kaU2PTYEfFIpovpZQX1ukAyVjnGotGUEq9gnXKxp8061KVQgjRJGTaiRBCCCGEEE1Epp0IIYQQQgjRRFrttJPqdU79sV49L4QQQgghxLWkB85ol5hW0mqTb6yJt70F/IUQQgghhLgWArHeE6BOrTn5LgQ4deoUBoPB0bEIIYQQQohWqqCggI4dO0IDZly0yuRbKTUOmABgMBgk+RZCCCGEEM1Cq7zgUtO0GOBxR8chhBBCCCFETa0y+RZCCCGEEKI5kuRbCCGEEEKIJtIq53wLIYQQovmqqqoiOzub3NxcKisrHR2OEA3m7u5OUFAQLi4ul12HJN9CCCGEaFJpaWkopQgNDcXFxQXrrTmEaN40TSMnJ4e0tDQ6d+582fW0ymkn1audvOHoOIQQQghxsaKiIjp27Iirq6sk3qLFUErh6+tLaWnpFdXTKpNvWe1ECCGEaN50ulaZgohW7mr8sShnvhBCCCGEEE1Ekm8hhBBCiAZYu3YtQ4cOdXQYzdqnn35KcHAwer2e/fv3OzqcZkmSbyGEEEKIJqSUIiEhoUnauu+++3j22WebpC2Ap556irfeeovCwkLCwsKarN2WRJJvIYQQQogWoqKiolm3l5ycTO/eva9KXa2VJN9CCCGEEDWkpqYyYcIEzGYzvr6+zJ0796J9kpKSUErVSigjIiJYs2YNAAkJCQwfPhwfHx/at2/P5MmTARg2bBgA/fr1Q6/Xs2nTJgC+/PJLbrzxRoxGI7fccguHDh2y1RsaGsorr7xC37598fLyuiiJ1TSNJ598kg4dOuDj40Pfvn05fPgw7777Lhs2bGDFihXo9XrGjRsHwMsvv0zXrl0xGAz06tWLTz/91FbX2rVrCQ8P58knn6Rdu3YsXbq0zr7UVFZWhl6vp7Kykn79+tG1a9c6Yz927BgREREYjUZ69+7NF198YavnvvvuY86cOURFRaHX6wkPD+fMmTPMmzcPk8nE9ddf3+Kns7TK5FuWGhRCCCHE5aisrGTs2LGEhISQlJTEqVOnmDJlSqPree6554iMjMRisZCWlsZjjz0GwM6dOwE4ePAghYWFTJ48mV9++YX777+fv/3tb+Tk5DB79mzuvPNOysrKbPVt3LiRr776itzcXJyda9+mJTY2lp07d3LixAlyc3PZtGkTvr6+PPzww0yfPp0//vGPFBYWEhMTA0DXrl3ZtWsXeXl5LFmyhHvvvZfTp0/b6ouLi6NLly5kZmayePHiOvtSk5ubG4WFhba+nTx50m7smqYxbtw4IiMjyczM5M0332T69OkcP37ctv/HH3/MsmXLyM7Oxs3NjSFDhtC/f3+ys7P5/e9/z/z58xv9eTQnrTL5lqUGhRBCCHE59u7dS3p6OitXrsTLywt3d/fLusjSxcWF5ORk0tPTL1nHe++9x+zZsxk8eDBOTk7MmjULNzc39uzZY9vn8ccfJzg4GA8PD7ttFRQU8Ouvv6JpGj179iQgIKDO9iZOnEhgYCA6nY7JkyfTvXt39u7daysPDAzksccew9nZGQ8Pj0b1xZ6ase/Zs4fCwkIWLlyIq6srI0aMYOzYsWzcuNG2/913382AAQNwd3fn7rvvxt3dnZkzZ+Lk5MTkyZNl5LslSktLY8uWLURHR7NlyxbS0tIcHZIQQgghmoHU1FRCQkIuGl1urBUrVqBpGoMGDaJ37968//77de6bnJzMqlWrMBqNtkdqairp6em2fYKDg+s8fsSIEcydO5dHH30UPz8/Hn74YfLz8+vc/6OPPrJNcTEajRw+fJjs7Ow622pMX+ypWV96ejrBwcG11nkPCQnh1KlTttd+fn625x4eHhe9Pj/C3lK1ueQ7LS2N3bt3YzKZCAsLw2QysXv3bknAhRBCCEFwcDApKSmXvDjQy8sLgOLiYtu2M2fO2J77+/vz3nvvkZ6ezt/+9jfmzJlT5wonwcHBLF68mNzcXNujuLiYqVOn2va51M1dHn/8cX7++WeOHDnCiRMnWLlypd3jkpOTeeihh3jrrbfIyckhNzeXG264AU3T6myrMX2xp2Z9gYGBpKamUlVVZduWkpJCx44dG1xfS9fmku/4+HhCQkIwmUzodDpMJhMhISHEx8c7OjQhhBBCONigQYMICAhg4cKFFBUVUVpayu7duy/az2w207FjR9avX09lZSXvv/9+rXnOmzdvtg3smUwmlFI4OTkB1pHdxMRE274PPfQQq1evJi4uDk3TKCoq4quvvqKgoKBBMe/bt4+4uDjKy8ttU2XqaquoqAilFGazGYAPPviAw4cP11t/fX1prMGDB+Pl5cWKFSsoLy9n+/btxMTEXNa8+paqzSXfFosFHx+fWtt8fHywWCwOikgIIYQQzYWTkxMxMTEkJCTQqVMngoKCbCuSXOi9995j5cqV+Pr6cuTIEW655RZb2b59+xg8eDB6vZ4777yT119/nc6dOwOwdOlSZs2ahdFo5OOPP+amm27ivffeY+7cuZhMJrp168batWsbHHN+fj4PPfSQbUDR19eXp556CoAHHniAo0ePYjQaGT9+PL169WLBggUMGTIEPz8/4uPjCQ8Pr7f++vrSWK6urnzxxRds2bKF9u3bM2fOHD766COuv/76y6qvJVI1v2ZoTZRSBiA/Pz8fg8Fg275lyxZMJhMmk8m2zWKxYLFYiIqKckCkQgghRNty7Ngxevbs6egwhLgs9s7fgoICvL29Abw1Tav3K4s2N/Ldp08fkpOTsVgsVFVVYbFYSE5Opk+fPo4OTQghhBBCtHJXdilvCxQUFER4eDjx8fEkJiZiMpkIDw8nKCjI0aEJIYQQ4hLS0tKIj4/HYrFgMpno06eP/A4XLUqrTL6rb7Izoa7yoKAg+Y8qhBBCtDDnVywLCQkhNDSUvLw8du/eLYNookVpldNO5CY7QgghROsjK5aJ1qBVJt9CCCGEaH1ayopl27dvb9Uj8ffddx/PPvtsg/ePjY1l/Pjx1zCihpk/fz6rV692dBiSfAshhBCiZTCZTOTl5dXalpeXV2sFs6shIiKCNWvWXNU6m5Om7t8zzzzDwoULAcjMzGTq1KkEBgbi4+NDeHg4cXFxtfaPjo4mJCQELy8vxo8fz9mzZ21lb731FjfddBNubm7cd999tY7bs2cPo0aNol27dpjNZiZOnMjp06dt5U8//TQvvfQS586du3adbQBJvoUQQgjRIsiKZS3Pvn37yMvL4+abbwagsLCQgQMH8vPPP3P27FlmzZrFmDFjbLeMP3LkCLNnz2bdunVkZGTg6enJnDlzbPUFBgby7LPPcv/991/UlsVi4eGHHyYpKYnk5GQMBgN/+MMfbOUBAQFcf/31fPHFF9e41/WT5FsIIYQQLcL5FcssFgv79+/HYrFc04stLRYLY8eOxWw2YzKZGDt2rO1OjwBnz57lD3/4A4GBgZhMpjqnVrzxxhv06tWLtLQ0srOzGTt2LEajkXbt2nHrrbfabrV+7NgxIiIiMBqN9O7du1aSeN999/Hoo48yZswYDAYDgwcPrnVHzQvt2bOHW265BaPRSL9+/di+fTsAixcvZteuXcydOxe9Xs/cuXPtHj9x4kT8/f3x8fFh2LBhHDlypLFvH2C9v8rw4cNtr7t06cL8+fMJCAjAycmJhx9+mHPnznH8+HEANmzYwLhx4xg2bBh6vZ4XX3yR//u//7Pd7XPChAmMHz8eX1/fi9qKiopi4sSJeHt74+npydy5cy+6O2lERARfffXVZfXlapHkWwghhBAtRlBQEFFRUUybNo2oqKhrOre6qqqKP/zhDyQnJ5OSkoKHh0etZHXGjBkUFxdz5MgRMjMzefLJJy+q48UXX2Tt2rXs2LGDoKAgVq1aRVBQEFlZWWRkZLB8+XKUUpSXlzNu3DgiIyPJzMzkzTffZPr06bakFGDjxo0sWbIEi8VCt27dWLx4sd24T506xZgxY3j22Wc5e/Ysr776Kvfccw9ZWVm89NJL3Hrrrbz11lsUFhby1ltv2a0jKiqK3377jczMTPr378/06dMv6z2Mj4+nR48edZYfOHCAc+fO0a1bN8A68t2vXz9bedeuXXF1deXEiRONbnvnzp307t271raePXty8ODBRtd1NUnyLYQQQghhh6+vL/fccw+enp4YDAYWL17Mjh07ADh9+jRbtmxh9erVmEwmXFxcao3waprG/Pnz+fbbb9m2bRtmsxkAFxcXTp8+TXJyMi4uLtx6660opdizZw+FhYUsXLgQV1dXRowYwdixY9m4caOtzgkTJjBo0CCcnZ2ZPn06Bw4csBv3+vXrueOOO7jjjjvQ6XSMGjWKm266ia+//rrBfb///vsxGAy4ubmxdOlSDh48eNF8+4bIzc2tdafxmvLz85kxYwZLliyxXUhbWFho96La8yPfDXXo0CH+/Oc/s3LlylrbDQYDubm5jarrapPkWwghhBDCjuLiYmbPnk1ISAje3t4MGzaM3NxcKisrSU1NpV27dnVe7Jmbm8u7777LokWLaiWTTz/9NN26dSMyMpIuXbrw8ssvA5Cenk5wcDA63X9Ts5CQEE6dOmV77e/vb3vu6elpmyd9oeTkZDZv3ozRaLQ9fvjhh1oXH9ansrKShQsX0rVrV7y9vQkNDQUgOzu7QcfXZDKZ7CbOJSUljBs3jptvvplFixbZtuv1evLz82vtm5+fX2cCb09CQgJRUVG8/vrr3HrrrbXKCgoKMBqNjezF1dUqb7JzKXJ3LCGEEEJcyqpVqzh+/DhxcXH4+/tz4MABwsLC0DSN4OBgzp49S25urt1kzmQysX79eiZNmsSnn35KeHg4YB15XbVqFatWreLIkSPcdtttDBw4kMDAQFJTU6mqqrIl4CkpKVx33XWNjjs4OJgZM2bw3nvv2S1XStV7fHR0NJ9//jlbt2613czIZDKhaVqjY+nbt+9FU0bKysoYP348HTt25G9/+1utst69e9eaFpKYmEhZWVmD34fk5GRGjhzJc889x4wZMy4qP3bsWK1pLY7Q5ka+z98dy2QyERYWhslkYvfu3bUuoBBCCCGEKCgowMPDA6PRyNmzZ3nhhRdsZQEBAURFRTFnzhwsFgvl5eXs3Lmz1vERERFs2LCBu+++27ac3pdffklCQgKapuHt7Y2TkxNOTk4MHjwYLy8vVqxYQXl5Odu3bycmJoYpU6Y0Ou57772XmJgYvv32WyorKyktLWX79u22XMfPz4/ExMR6++3m5oavry/FxcU888wzjY7hvDvuuMM2VQegvLyc3//+93h4ePDRRx/VGukHmD59OjExMezatYuioiKef/55JkyYYBv5rqiooLS0lMrKSlvfKioqAOtc9xEjRvDoo4/yyCOP2I1nx44dREVFXXZ/roZWmXxX317+DXtlcncsIYQQQlyKUop58+ZRUlJC+/btufnmmxk9enStfdatW4eLiwvXX389HTp04LXXXruonlGjRvHBBx9w55138vPPP/Pbb78xcuRI9Ho9Q4YMYc6cOURERODq6soXX3zBli1baN++PXPmzOGjjz7i+uuvb3TswcHBfP755yxfvhyz2UxwcDArV660raryxBNP8Mknn2AymXj88YtvCD5z5kxCQkLo2LEjvXr1si0TaE9KSgp6vZ6UlBS75f3798fHx8f2x8e///1vvvzyS2JjYzEajej1evR6Pbt27QKsI9+rV69m+vTpdOjQgYKCAt5++21bfcuWLcPDw4OXX36Z9evX4+HhwbJlywBYs2YNiYmJvPDCC7Z69Xq97djTp09z9OhRh9/wR13OVwgtgVLKAORfOE8oOjqasLCwWn9pVVVVsX//fqZNm+aASIUQQoi25dixY/Ts2dPRYdSpf//+PP/88w5P0lqL2NhY3n77bT777DOHxrFgwQK6du1aa93wy2Hv/C0oKMDb2xvAW9O0eq8ObXNzvs/fHavmBRLX4u5YQgghhGh5jhw5wrFjxwgLC3N0KK1GZGQkkZGRjg6DVatWOToEoJVOO6mP3B1LCCGEEPb86U9/IjIykldeeYWQkBBHhyNaqTY37QRktRMhhBDCkZr7tBMh6iPTTi5DUFCQJNtCCCGEEKLJtcnkW0a+hRBCCCGEI7S5Od+yzrcQQgghhHCUNjfyHR8fj4eHB4cPH6agoACDwUCHDh2Ij4+X0W8hhBBCCHFNtbnkOyEhgdTUVIqLi223cPX09CQ4ONjRoQkhhBBCiFauzU07OXbsGKdPn8ZgMNC+fXsMBgOnT5/m2LFjjg5NCCGEEM3A8ePHCQsLw2Aw8MYbdm+Y3exs2LChwWtp9+7dm+3bt1/bgK4SpRQJCQmODuOqanPJd2pqKj4+PphMJsxmMyaTCR8fH1JTUx0dmhBCCCGagRUrVhAREUFBQYHd2683VEREBGvWrLmKkVklJSWhlKKiosK2bfr06cTGxjbo+CNHjhAREQHA0qVLuffeey87lmvVx9aszSXfRUVFdOjQAZ1OR1FRETqdjg4dOlBUVOTo0IQQQgjRDCQnJ9O7d29Hh9Eq1PwDQVi1ueTbaDRy5swZXFxcaN++PS4uLpw5cwaj0ejo0IQQQgjhYCNGjGDbtm3MnTsXvV7PiRMn+OqrrwgLC8Pb25vg4GCWLl1q27+0tJR7770XX19fjEYjAwcOJCMjg8WLF7Nr1y5bPXPnzrXb3sSJE/H398fHx4dhw4Zx5MgRW1lJSQkLFiwgJCQEHx8fhg4dSklJCcOGDQOsOY1er+fHH39k7dq1DB06FIBHHnmEp556qlY7d911F3/5y18ACA0NZevWrXzzzTcsX76cTZs2odfr6devH5s3b2bAgAG1jl21ahXjx4+/KPa6+qiU4n//93/p3r073bt3B+CJJ54gODgYb29vBgwYwK5du2z1VFZWsnz5crp27YrBYGDAgAF2ZyT88MMPBAcHs23bNvsfXgvR5i64HD58OPv27SMxMREnJycqKyvJz89n+PDhjg5NCCGEaHMqKzUyMkqbpC0/P3ecnFS9+/zrX/8iIiKCe++9lwcffBCA9PR0PvroI3r37s3hw4cZNWoUN954I+PHj+fDDz8kLy+P1NRU3NzcOHDgAB4eHrz00kvs3r27Vj32REVF8f777+Pq6sqf/vQnpk+fzoEDBwB46qmnOHLkCP/+97/x9/cnLi4OnU7Hzp076dy5M7m5uTg7W1O548eP2+qcNm0a06dPZ+XKlSilsFgsxMbG8s4779Rqe/To0TzzzDMkJCSwfv16AMrKypg9e3atuziuX7+eZ5999qLY6+vjZ599RlxcHB4eHgAMHDiQ559/Hh8fH15//XUmTpxIUlIS7u7u/OUvf2Hjxo18/fXXXHfddRw6dAhPT89a9X377bc8+OCD/POf/2TQoEH1fobNXZtLvu+55x6Ki4vJyMiguLgYd3d3evfuzT333OPo0IQQQog2JyOjlNCQL5ukraTksQQGejT6uPPzowH69u3L1KlT2bFjB+PHj8fFxYWcnBwSEhLo27fvRaPGl3L//ffbni9duhSTyUReXh4Gg4H333+fPXv20LFjRwBuueWWBtV56623opRi165dDBs2jE8++YQhQ4YQGBh4yWPd3NyYPHky69ev56WXXuLIkSMkJSUxduzYRvVr0aJFtGvXzva65rzyBQsWsGzZMo4fP06/fv1Ys2YNK1asoEePHgD069evVl2bN29m9erVfP311/Tp06dRcTRHrXLaiVJqHGD38uSgoCBmzJjB7bffzrBhw7j99tuZMWOGrPEthBBCCLvi4uK47bbbMJvN+Pj4sHr1arKzswFsOcWUKVMIDAzkj3/8I+Xl5Q2qt7KykoULF9K1a1e8vb3+w7MQAAAgAElEQVQJDQ0FIDs7m+zsbEpLS+natWuj41VKMWXKFDZu3AhAdHQ006dPb/Dxs2bNIjo6Gk3TWLduHZMmTcLNza1RMVy4hPOqVavo2bMnPj4+GI1G8vLybO9hampqvf187bXXmDRpUqtIvKGVjnxrmhajlNoO3GevPCgoSJJtIYQQohnw83MnKblxo6pX0tblmDZtGnPnzmXLli24u7szb948W+Lo4uLCkiVLWLJkCUlJSdxxxx306NGDBx54AKXqn+ISHR3N559/ztatWwkNDSUvLw+TyYSmabRv3x53d3dOnjx50UjwpeoFmDp1KpGRkSxcuJC4uDg+/fRTu/vZq+vmm2/G1dWVXbt2ER0dTXR0dJ3t1BVLze27du3ilVde4fvvv6d3797odDpbP8GaqJ88eZIbbrjBbl2bN2/mgQceoGPHjsybN6/OWFqKVpl8CyGEEKJlcHJSlzUVpCkVFBTQrl073N3d2bt3L9HR0bY1tbdt20b79u3p1asX3t7euLi44OTkBICfnx+JiYn11uvm5oavry/FxcU888wztjKdTsf999/P/PnzWbduHX5+fuzdu5f+/ftjNpvR6XQkJiZy3XXX2a07LCwMs9nMgw8+yO23317nwhJ+fn589913thsPnjdz5kzmzp2Ls7Oz7ULOuo6vr4/n++ns7IzZbKaiooKXX36Z/Px8W/mDDz7Ic889R69evejWrRvx8fF07NgRX19fAAIDA/n++++JiIjA1dWVOXPm1Ntec9cqp50IIYQQQlwtb7/9Ns8//zwGg4E///nPTJo0yVZ25swZfv/73+Pt7U3Pnj0ZPny4bX7zE088wSeffILJZLK7XvjMmTMJCQmhY8eO9OrVi5tvvrlW+auvvkqfPn0YOHAg7dq1409/+hNVVVV4enqyePFiwsPDMRqN7Nmzx27cU6dOZevWrUybNq3Ovk2cOBEAX19f+vfvb9s+Y8YMDh8+zIwZM+p9by7VR4Dbb7+dqKgorrvuOkJCQnB3d681LWX+/PlMmjSJyMhIvL29eeCBBygpKalVR6dOnfj+++955ZVXWvy64ur8kH9ro5QyAPn5+fkYDAZHhyOEEEKIajVX0hDNU0lJCR06dOCXX36xLRcorOydvwUFBXh7ewN4a5pWUN/xMvIthBBCCCFqeeeddxg4cKAk3teAzPkWQgghhBA2oaGhaJrGZ5995uhQWqU2mXynpaURHx+PxWLBZDLRp08fWf1ECCGEEAJISkpydAitWpubdpKWlsbu3bsxmUyEhYVhMpnYvXs3aWlpjg5NCCGEEEK0cm1u5Ds+Ph6DwUBiYiKFhYXo9XqMRiPx8fEy+i2EEEIIIa6pNpd8JyYm4uLigr+/P35+fhQVFZGWltbgu1EJIYQQQghxudrctJPc3Fw8PT3R6/UopdDr9Xh6epKbm+vo0IQQQgghRCvX5pJvb29vcnJyyMvLo6qqiry8PHJycs6vzSiEEEIIIcQ10+aS727dutG5c2dycnKIj48nJyeHzp07061bN0eHJoQQQohWbunSpbY7YKakpKDX66msrHRwVI0TFRXFhx9+eMn9du3aRY8ePZogoiu3du1ahg4d2iRttbnku0+fPpSUlHDDDTcwevRobrjhBkpKSujTp4+jQxNCCCFEG9KpUycKCwtxcnJydCh1qvnHwnlbtmxh1qxZlzz21ltv5fjx47bXoaGhbN269bLiSEpKQilFRUXFZR3fnLS55DsoKIjw8HAsFgv79+/HYrEQHh4uK50IIYQQQrRgLSUxb3PJN1gT8KioKKZNm0ZUVJQk3kIIIYSwCQ0NZeXKlfTt2xcvLy8eeOABMjIyiIqKwmAwMHLkSCwWi23/PXv2cMstt2A0GunXrx/bt2+3lf3nP/9h+PDhGAwGRo0aRXZ2tq3swtHcC0eGa446n9/3gw8+IDg4GJPJxOrVq9m3bx99+/bFaDQyd+7cOvu0d+9ehgwZgtFoJCAggLlz53Lu3Dlb+ZEjRxg1ahTt2rXDz8+P5cuX880337B8+XI2bdqEXq+nX79+AERERLBmzRrKysowGo0cPnzYVk9WVhYeHh5kZmayfft2W441Y8YMUlJSGDduHHq9nhUrVjBmzBjefPPNWnH27dvX7p01hw0bBoDRaESv1/Pjjz+ydu1awsPDefLJJ2nXrh1Lly7l5MmTjBgxAl9fX9q3b8/06dNrLaqRmprKhAkTMJvN+Pr61vmePf300wwdOpS8vLw639PL1eaWGgTYt28fsbGxZGVlYTabiYyMZODAgY4OSwghhGhzKrVKskqzmqQts7sZJ9WwKR7//Oc/+e6776ioqCAsLIz9+/fz97//nV69ehEVFcUbb7zBkiVLOHXqFGPGjGHdunWMHj2a77//nnvuuYdff/0Vs9nMtGnTGDJkCLGxscTFxTFmzBjuuuuuy+5DXFwcv/32Gzt37uTOO+9k9OjRbN26lfLycsLCwpg4cSLDhw+/6DgnJyf++te/ctNNN5GWlkZUVBRvv/028+bNo6CggJEjR/LUU08RExNDeXk5R48eZfDgwTzzzDMkJCSwfv36i+p0c3NjwoQJbNy4kZdeegmAjz/+mOHDh9OhQweOHj1q23fdunXs2rWLNWvWMHLkSMD6x8aqVat47LHHADh48CCnTp3ijjvuuKitnTt30rlzZ3Jzc3F2tqavx48fJy4ujilTppCZmUl5eTmnTp1i0aJFDBs2jPz8fO655x6WLl3Ka6+9RmVlJWPHjmXEiBGsW7cOJycnfvrpp1rtVFVVMXv2bFJSUoiNjcXT0/MyP6m6tbnke9++fWzevJm+ffsyaNAgMjIy2Lx5M4Ak4EIIIUQTyyrNom/sgCZp61Dkz/h7+Ddo38ceeww/Pz/AOne5Q4cOhIWFAXD33Xfz/fffA7B+/XruuOMOW8I4atQobrrpJr7++mtuu+029u3bx9atW3Fzc2PYsGGMGzfuivrw3HPP4e7uTmRkJF5eXkydOpUOHTrY4ty/f7/d5HvAgP++x6GhocyePZsdO3Ywb948vvzyS/z9/VmwYAEA7u7uDB48uEHxTJs2jYcfftiWfEdHRzN79uwGHXvXXXfxyCOP8Ntvv9G9e3fWrVvH5MmTcXV1bdDxAIGBgbbk3dnZmW7dutkW0TCbzcyfP58XXngBsI7+p6ens3LlSlsCX/Miy/LycqZOnUpFRQUxMTGNiqMx2lzyHRsbS9++fQkMDASw/RsbGyvJtxBCCCEAbIk3gIeHx0WvCwsLAUhOTmbz5s3ExMTYysvLy7nttttIT0/HZDLh5eVlKwsJCSE1NfWax3WhEydOMH/+fH766SeKi4upqKiwJeSpqal07dr1suIZMWIEJSUlxMXF4e/vz4EDB7j77rsbdKybmxuTJk1i/fr1LFmyhI0bN/LJJ580qv3g4OBarzMzM3n88cfZtWsXBQUFVFVVYTKZAGs/Q0JCbIn3hRISEjh48CB79+69Zok3tMHkOysri0GDBtXa5ufnd9HXDkIIIYS49szuZg5F/txkbV1twcHBzJgxg/fee++isuTkZCwWC0VFRbYEPCUlBaWU3bq8vLwoLi62vT5z5sxVi/N//ud/CAsLY+PGjRgMBl577TVbohscHMzGjRvtHldXrOfpdDomTZrExo0b8fPzY+zYsRgMhgbXNWvWLGbMmMHQoUPx9PRkyJAhjYrjwu2LFi1CKcWhQ4fw9fXls88+s83rDg4OJiUlhYqKCrsJeM+ePXn00UeJioriX//61zVbJrHNXXBpNptJTEwkISGBw4cPk5CQQGJiImbz1f8PKYQQQoj6OSkn/D38m+TR0PnejXHvvfcSExPDt99+S2VlJaWlpWzfvp20tDRCQkK46aabWLJkCefOneOHH36oNUJ+oRtvvJF//OMflJeX89NPPzV6FLg+BQUFeHt7o9fr+fXXX3nnnXdsZWPHjuXMmTO89tprlJWVUVBQQFxcHGAdoExKSqKqqqrOuqdNm8amTZvYsGED06ZNq3M/Pz8/EhMTa20bMmQIOp2OBQsWMGPGjDqPNZvN6HS6i46310+9Xo/RaOTUqVOsXLnSVjZo0CACAgJYuHAhRUVFlJaWsnv37lrHT506leXLlzNy5EhOnjxZb1uXq80l3/369WPbtm0UFBRgNpspKChg27Zttit4hRBCCCEaKjg4mM8//5zly5djNpsJDg5m5cqVtmQ1OjqauLg42rVrxwsvvMDMmTPrrOvFF1/k5MmTmEwmlixZUm8i21ivvvoq0dHRGAwGHnroISZPnmwrMxgMfPfdd8TExODv70/37t3Ztm0bABMnTgTA19eX/v3726178ODBeHl5kZ6eTlRUVJ0xLFq0iGXLlmE0Gnn11Vdt22fOnEl8fPxF64nX5OnpyeLFiwkPD8doNLJnzx67+y1ZsoRffvkFHx8fxowZw4QJE2xlTk5OxMTEkJCQQKdOnQgKCmLTpk0X1TFr1iyef/55RowYQVJSUp0xXS6ladpVr/RqUEr1BJ4A2gPfa5r2jlKqC7AY8NE07feXON4A5Ofn59f6+mPLli0cOXKEvXv3kpeXh4+PD4MGDaJ37971njBCCCGEuDqOHTtGz549HR2GaCY++ugj3n33XX744QdHh9Ig9s7f898sAN6aphXUd3yTzvlWSr0PjAUyNU27ocb20cDrgBOwRtO0lzVNOwY8opTSAe8BaJqWCDyglLrs72ESEhJwcXFh6tSpGAwGCgoKSElJISEh4Uq6JoQQQgghGqm4uJi3336bOXPmODqUJtPU007WAqNrblBKOQH/C0QBvYCpSqle1WV3Aj8A31+tAPLz83FxcSEtLY1ffvmFtLQ0XFxcyM/Pv1pNCCGEEEKIS/j2228xm834+fld1Sk2zV2TJt+apu0Ezl6weRCQoGlaoqZp54B/AHdV7/+Fpmm3ANOvVgw6nY6UlBRcXV0JCQnB1dWVlJQUdLo2N/1dCCGEEMJhbr/9doqKivj888/rXP6vNWoOGWdHoOaCl2lAR6VUhFLqDaXU34CvAZRSvkqp1UCYUmqRvcqUUg8rpX4Cdtgrr6qqonPnziilyMjIQClF586d672KVwghhBBCiKuhOfyZYW/hRk3TtO3A9gs25gCP1FeZpmnvAu+ev+DywnJvb29ycnJwd3dHp9NRWFhIaWnp+UnyQgghhBBCXDPNIflOA2renigISL9WjZlMJlJTUykqKqKsrAw3Nze8vLzo1KnTtWpSCCGEEEIIoHlMO9kHdFdKdVZKuQJTgC+uVWM5OTmkpKRQWVmJm5sblZWVpKSkkJOTc62aFEIIIYQQAmj6pQY3AhFAe6VUGrBE07S/K6XmAt9iXWrwfU3TjlxhO+OACfbKDh06REFBAWfPnqWyshInJydcXFw4dOjQlTQphBBCCCHEJTX1aidTNU0L0DTNRdO0IE3T/l69/WtN067TNK2rpmkvXYV2YoDH7ZUdPXoUd3d3+vfvz7Bhw+jfvz/u7u4cPXr0SpsVQgghRCsQGhrK1q1bHR1Gg0RFRfHhhx9ecr9du3bRo0ePJojoyq1du5ahQ4c6OoxrpjlMO2lSxcXFODk5kZaWxrFjx0hLS8PJyYni4mJHhyaEEEIIUaelS5dedAv2LVu2MGvWrEsee+utt3L8+HHb6yv5AyMpKQmlFBUVFZd1fFvXHC64bFIVFRWcPXsWg8GATqejrKyMgoICOYGEEEIIIa6SioqKNrV2d2O0ypHv6jnfb9gr0zSNiooKdDqd7VFRUYGmaU0cpRBCCCGau7KyMubNm0dgYCCBgYHMmzePsrIyAIYPH84///lPAH744QeUUnz99dcAbN26lRtvvNFunXv37mXIkCEYjUYCAgKYO3cu586ds5UfOXKEUaNG0a5dO/z8/Fi+fDnffPMNy5cvZ9OmTej1evr16wdAREQEa9asoaysDKPRyOHDh231ZGVl4eHhQWZmJtu3bycoKAiAGTNmkJKSwrhx49Dr9axYsYIxY8bw5ptv1oqzb9++fPbZZxfFP2zYMACMRiN6vZ4ff/yRtWvXEh4ezpNPPkm7du1YunQpJ0+eZMSIEfj6+tK+fXumT59Obm6urZ7U1FQmTJiA2WzG19eXuXPn2n2/nn76aYYOHUpeXl49n1TL0SqT7/rmfHt4eODs7Iynpyc+Pj54enri7OyMh4dHE0cphBBCCK2yksqMjCZ5aJWVjY7vpZdeYs+ePRw4cICDBw+yd+9eli1bBliT7+3btwOwc+dOunTpwo4dO2yvhw8fbrdOJycn/vrXv5Kdnc2PP/7I999/z9tvvw1AQUEBI0eOZPTo0aSnp5OQkMDvfvc7Ro8ezTPPPMPkyZMpLCzk4MGDtep0c3NjwoQJbNy40bbt448/Zvjw4XTo0KHWvuvWraNTp07ExMRQWFjIH//4R2bNmsX69ett+xw8eJBTp05xxx13XBT/zp07AcjNzaWwsJAhQ4YAEBcXR5cuXcjMzGTx4sVomsaiRYtIT0/n2LFjpKamsnTpUgAqKysZO3YsISEhJCUlcerUKaZMmVKrnaqqKh566CEOHTpEbGwsPj4+dX9QLUib/D7A398ff39/nJycqKysRNM0LBaLo8MSQggh2pyq7GyywsKapC3z/v04+fk16pgNGzbw5ptv2hLYJUuWMHv2bF588UWGDx/Ok08+CVgT0kWLFrFmzRoAduzYwRNPPGG3zgEDBtieh4aGMnv2bHbs2MG8efP48ssv8ff3Z8GCBQC4u7szePDgBsU6bdo0Hn74YV56ybp2RXR0NLNnz27QsXfddRePPPIIv/32G927d2fdunVMnjwZV1fXBh0PEBgYyGOPPQaAs7Mz3bp1o1u3bgCYzWbmz5/PCy+8AFhH/9PT01m5cqVtekrNiyzLy8uZOnUqFRUVxMTENCqO5q5VjnzXR9M03N3dcXd3x8PDw/Zcpp0IIYQQ4kLp6emEhITYXoeEhJCebr0X4JAhQzhx4gQZGRkcOHCAmTNnkpqaSnZ2Nnv37rVNz7jQiRMnGDt2LP7+/nh7e/PMM8+QnZ0NWKdidO3a9bJiHTFiBCUlJcTFxZGcnMyBAwe4++67G3Ssm5sbkyZNYv369VRVVbFx40ZmzJjRqPaDg4Nrvc7MzGTKlCl07NgRb29v7r333lr9DAkJqXNeeEJCAp9//jlLlixpVYk3tMGRbzc3NyoqKsjOzkYpZZsD7ubm5ujQhBBCiDZH17495v37m6ytxgoMDCQ5OZnevXsDkJKSQmBgIACenp4MGDCA119/nRtuuAFXV1duueUW/vKXv9C1a1fa19He//zP/xAWFsbGjRsxGAy89tprfPLJJ4A1ga05daQmpVT9/dPpmDRpEhs3bsTPz4+xY8diMBgaXNesWbOYMWMGQ4cOxdPT0zadpKFxXLh90aJFKKU4dOgQvr6+fPbZZ7Z53cHBwaSkpNR5YWbPnj159NFHiYqK4l//+leLWSaxIVrlyHd9F1z6+fmRm5uLTqfD1dUVnU5Hbm4ufo38GkoIIYQQV045OeHk59ckD+Xk1Oj4pk6dyrJly8jKyiI7O5s///nPtZb7Gz58OG+99ZZtfndERESt1/YUFBTg7e2NXq/n119/5Z133rGVjR07ljNnzvDaa6/ZVmSLi4sDrDlMUlISVVVVddY9bdo0Nm3axIYNG5g2bVqd+/n5+ZGYmFhr25AhQ9DpdCxYsKDeUW+z2YxOp7voeHv91Ov1GI1GTp06xcqVK21lgwYNIiAggIULF1JUVERpaSm7d++udfzUqVNZvnw5I0eO5OTJk/W21ZK0yuS7vgsu+/XrR25uLllZWWRmZpKVlUVubq7tqmEhhBBCiPOeffZZbrrpJvr27UufPn3o378/zz77rK18+PDhFBQU2KaYXPjanldffZXo6GgMBgMPPfQQkydPtpUZDAa+++47YmJi8Pf3p3v37mzbtg2AiRMnAuDr60v//v3t1j148GC8vLxIT08nKiqqzhgWLVrEsmXLMBqNvPrqq7btM2fOJD4+/qL1xGvy9PRk8eLFhIeHYzQa2bNnj939lixZwi+//IKPjw9jxoxhwoT/3nzcycmJmJgYEhIS6NSpE0FBQWzatOmiOmbNmsXzzz/PiBEjSEpKqjOmlkS11rnOSikDkJ+fn1/rK5c333yT+Ph4UlNTKS0txd3dneDgYPr06WO7SEAIIYQQ186xY8fo2bOno8MQdnz00Ue8++67/PDDD44Opdmyd/6e/zYD8NY0raC+49vcnO/8/HxuvPFG+vTpQ0lJCR4eHjg5OclqJ0IIIYRo04qLi3n77beZM2eOo0Np1dpc8q3T6fjmm2/IzMy0TfLv0KFDnRcVCCGEEEK0dt9++y0TJkxg5MiR9c4VF1euzSXfP//8M2fOnKFLly54eHhQUlJCYmIiP//8s6NDE0IIIYRwiNtvv52ioiJHh9EmtMrku3q1kwn2yo4ePcoNN9xA165d8fT0pLi4mKqqqlq3YxVCCCGEEOJaaHOrnVRVVeHv7092djYnT54kOzsbf3//epftEUIIIcTV1VoXfBCt29U4b1tl8l2fyspKMjIy8Pb2JiAgAG9vbzIyMqisrHR0aEIIIUSb4OLiQklJiaPDEKLRysvL67wrZ0O1ueTb1dWVzMxMysrK0Ol0lJWVkZmZ2epuXSqEEEI0Vx06dODUqVMUFxfLCLhoMaqqqsjIyMDHx+eK6mmVc77r4+3tjbOzM4cOHULTNJRSuLi4nF+bUYgmk5aWRnx8PBaLBZPJRJ8+fQgKCnJ0WEIIcc2d/52bnp5OeXm5g6MRouG8vLxo3779FdXR5pJvJycn/P39cXV1pbKyEicnJ86dO8d//vMfR4cm2pC0tDR2795NSEgIoaGh5OXlsXv3bsLDwyUBF0K0Cd7e3jLwJdqkNpd8+/r6UlZWRo8ePfD29iY/P59Dhw7h6+vr6NBEGxIfH09ISAgmkwnA9m98fLwk30IIIUQr1uaS75tvvpmjR4/y008/UV5ejouLCwaDgbCwMEeHJtoQi8VCaGhorW0+Pj4kJiY6JiAhhBBCNIlWecFl9Trfb9grCw4OxmAw4ObmZnsYDAaCg4ObOErRlplMJvLy8mpty8vLs42ACyGEEKJ1apXJd33rfP/222/89ttvmEwmunXrhslksm0Toqn06dOH5ORkLBYLVVVVWCwWkpOT6dOnj6NDE0IIIcQ1pFrrEj9KKQOQn5+fj8FgsG0fM2YMVVVVFBYWUlFRgbOzM3q9Hp1Ox1dffeW4gEWbI6udCCGEEK1DQUHB+QuIvTVNK6hv3zY35zs5OZlOnToxYMAADAYDBQUFnDhxguTkZEeHJtqYoKAgSbaFEEKINqbNJd/l5eUEBASg1+sB0Ov1BAQEcPLkSQdHJoSoad++fcTGxpKVlYXZbCYyMpKBAwc6OiwhhBDiirS55NvZ2Zns7GyysrJsN9lRSl3xrUKFEFfPvn372Lx5M3379mXQoEFkZGSwefNmAEnAhRBCtGhtLuM8d+4cpaWldOnSBS8vL4qKikhMTOTcuXOODk2IJtWc55zHxsbSt29fAgMDAWz/xsbGSvIthBCiRWuVq53Up7KyknPnzpGbm0tWVha5ubmcO3eOyspKR4cmRJM5f4dNk8lEWFgYJpOJ3bt3k5aW5ujQAMjKysLPz6/WNj8/P7KyshwUkRBCCHF1tMqR7+p1vifYK9PpdLi6ulJaWkpZWRmapuHq6opO1+b+DhFtWHO/w6bZbCYjI8M24g2QkZGB2Wx2YFRCCCHElWuVGWd963w7OzsTEBBAjx496N69Oz169CAgIEDmfIs2xWKx4OPjU2ubj48PFovFQRHVFhkZyaFDh0hPT6eyspL09HQOHTpEZGSko0MTQgghrkibyzh9fX3JycnBxcUFd3d3SktLycnJwdfX19GhCdFkzt9hs+YdNZvTHTbPz+uOjY3lp59+wmw2M3HiRJnvLYQQosVrc8m32Wzm3LlzZGRk2LZVVlbK19miTenTpw+7d+8GrCPeeXl5JCcnEx4e7uDI/mvgwIGSbAshhGh12lzy7eLiQnl5Od27d0ev11NYWMivv/6Ki4uLo0MToskEBQURHh5OfHw8iYmJmEwmwsPDm8V8byGEEKI1a3PJt7u7Ox06dODIkSOUlZXh5uZG165dyc/Pd3RoQgBNtwSg3GFTCCGEaHqt8oLL+lRUVHDmzBkCAgLo2rUrAQEBnDlzhoqKCkeHJkSzXwJQCCGEEFemzSXfRUVFFBUV4eHhgdFoxMPDw7ZNCEeruQSgTqfDZDIREhJCfHy8o0MTQgghxFXQ5qadlJSU0K5dOzIzM6msrMTJyQkfHx/Onj3r6NBEG2NveonFYiE0NLTWfj4+PiQmJjomSCGEEEJcVW0u+S4vL0cphZ+fH66urpw7d46cnBzKy8sdHZpoQ85PLwkJCSE0NJS8vDx2795NRUVFs14CUAghhBBXps0l35qmAWAwGHBzc6OsrIycnBzbdiEaKjcXSkvB2Rnat2/csXXdYTIhIYHk5GSg+S4BKOxrqgtlhRBCtGytcs539e3l37BXVlVVhU6nIy8vj+zsbPLy8tDpdFRVVTVxlKKl27ABliyB1asvLrvUJQR13WFSp9MRHh6OxWJh//79WCwWWQKwBZALZYUQQjRUqxz51jQtRim1HbjvwrLy8nJKS0upqKiwJeIVFRUy7UTUq6wMXFxAV+PP1fPPL/y77fRpeOUViIqCyEhQ6uL66rvDpCwBaNWSRpLr+iYjPj6+2cYshBDCMVpl8l2f8vJyTp06hclkwtnZmYqKCiwWiyw1KOpUVARvvAEBATBr1n+T6ZEj4aabwNPzv/tqGnzwAZSUwKefQo8ecMH1k0DLuMOkI9U1J/5KvgW4lsm8XCgrhBCiodpc8n3u3Dk8PDwwm814enpSXFxMYWEhxcXFjg5NND/UhS4AACAASURBVFP/+AckJVkf3brB0KHW7d27X7yvUjBjBrz7rjUxt5d4g/UGN126dCE2NpasrCzMZjORkZEEBQW1qBHfa+VqjyRfi2S+pvq+yRBCCCFqanPJt4uLCz179sTFxYXKykoMBgM9e/bk559/dnRoopmaNAmSkyEkBIYMufT+wcGweDG4uta9T1paGomJifzud7+zjXyfHyVNTEy8ZkliS3G1R5L/P3tnHh5Vef3xz50lM5PMJJnsIQlZCIQAEQKSCFQ2lU3FVql119Yu1rq21V/tprZa21r3ql3c9wWtIgIiIJsiBAwhgUDInglZJ5NMZsms9/fHJSsJkJgNcj/PkyeTu73nzk0m5z3vOd8z1Gkh8kqGjIyMjMzpclYWXJ4Mg8FAQEAATqcTm82G0+kkICAAg8Ew0qbJjBLa2qC1tfNngwHuuQd+9CNQKk/vGlpt9/xwjwfefRfMZunnvprpbNy4EYPBQGlpKTt27KC0tBSDwTDmmuy0R5K78m0iyX0VuFoslgHb2JX4+Hi5UFZGRkZG5rQYc5HvpKQkioqKGDduHEFBQbhcLoqKik6IssmMPUQR3n4bvv4a5s6Fq67q3Pdt5mZut1SAaTJBaankyFssFgwGA/v27cNms6HX6xk/fjwVFRVERkYSExNDdHQ0drsdk8k05gqCBzuSPBxpIXKhrIyMjIzM6TDmIt9RUVEIgoDb7cbpdOJ2uxEEgaioqJE2TWaEEQRoaJCUTXbtkr4PBgEBnfnhKpUUWff7/Wzbto2GhgacTicNDQ1s27YNq9VKYGAger0eQRDQ6/UEBgbS3Nw8OMacIQx2JDkjI4OKigosFgt+vx+LxUJFRQUZGRmDbLmMjIyMjMzJGXOR78LCQnQ6HS6Xi7a2NgRBQKfTUVhYONKmyQwjbjds2ADTpkFKSuf2hQul1JIFCyRpwcFi1SqIjpauq1CA2WymoqKS5OQ5JCVpsViaqKysxOfzYTabCQoKwmAw0NraitlsJjg4ePCMGYO0O/P5+fmUlpZiNBrltBAZGRkZmRFhzDnfpaWlpKenExsb2yE1WFNTw9GjR0faNJlhwuGAhx+GxkYp0t3V+Z4+XfoabFQqWLSo8+f6+nomTVrA++9PISCghfPOa2X27Nls27aN5ORk6uvrKS8vx2AwkJycjHowZwJnAEOhTiKnhcjIyMjIjAbGnPPtcDiwWq1ERESgVCrxeDxYrVZZanAMERgoOdyNjVIBpCj23ghnKPH7/VRWSvnGDkcQOp0Lvz8Ao9GIyWTCZAoiIEAH2HC73axcuXJI7KipgZYWKTWm6yTE74fDh6XXUVEQEdG5z+WSVg60WmlSMRTv3anUSfx+yQaPR3qeXQth6+vBZpNWLhISut/TkSOd9xQe3rnPbIbaWul1Wpp0X+2Sj4WFHrRaI5mZqcyZE9txjsMhvUd+P0yYAF3Tx4uKoLJSem8uuKD7vb36qpR6lJEh1Ra0U1ICa9ZIr6+9VrKxnY8/huJiiIyEG27o3O5ywTPPSL/DixZJ8pbt7N0LmzdLr++8U3pe7bz0EtTVSelQq1Z1bm9rgx07IDhY2hcWhoyMjIzMIDPmnG+FQoHBYKClpQWLxdLxs0Ix5tLfxwyiKDkVOl3ntiuvlBym+fOH3/EGiI6OJidnA7NnL8brjSEqCnbv3k1CQgIKhYLc3AxsNi1JSQ3Mm9eZEuX1djq/PWsFCwqk5j7h4d0d6eJiyXmz2eCWW6T0l3Y+/BAOHJC2/elPndt9PnjqKen1974Hy5Z17tu7F157TXr9l790d2Jfekly6FNT4Qc/6NxeXw///rf0etUqSE/v3Ldxo5Rjr1bDb38rbWuXGvzvf8NwOgUyM53Mm+fvkBrcv7/zen/4A3QNaK9eDXl50rY//KFzu9sNTz7ZacNFF3Xuy8uT1GgAHn8cams7I+8VFSlUVIjs3WsiIcHXET1vauq04ZZbuj+P3FzYskX6nevpfOfmSs8pNLT7dputc8LTs97g2DHJoe8ZI/D7oX3RLjOz+76WFqnAt/24nterqoIeAjCYzdL7B/CTn8jOt4yMjMxQMOacb1EU8fv9Hd8FQej4Webso64O3nhDyrO+665OR9tgkPK7R4qIiAgmT25Fqy1CFI/gdAokJSVhs9lITp5FcHAKwcGwcKGBqVM1HRHftWth/Xrpfp5/vvs1X38dmpth3rzuzrfHIzluAFZrd+c7KKj/tre1db7uGk0FKXpcWXmiU+f1SmovIDmeXbFaJWdQo+nc1q5O0tgYjdOpoKVF2U2dpKuGek8hmPYouM93+vfUcwLWXQpSQKMJICwsrJsueNf5es+Pj3b7ehOpiY6WnOueafxBQdKEsOv57YwbJ3VajYzsvl2hkCL1cKKjHBbWOcnpGVuYMEEaf/z47tut1s7XcpmBjIyMzNAw5pxvv99PU1MTqamp6PV6bDYbNTU1+HuGhmTOCr74otPx3LMHsrNH1p52FAoFixYtorKyspvU4OrVq0lI0POLXzRSVhZAaqq7W3OZdqfM75ecy67pFu373O7uY4WGSpFovb67gwuwdKmU+tBzu0oF994rve7p1KWlSTKMbW0nOt+pqZLjnZjYfbtWK+XSC8KJjnl8PMycKY3ZTkZGBmvXrkUQHKjVSmpqmtm/v4ZLLrkEgNhYuOIK6Z572rdsmTQB6brS0f7+3HOP9LprtB5g1qxOm7Xa7lKQsbF+kpIMJCfHdNMFj4yEP/5Rcmx7rkKsWAHLl/detHvffSduA+m9a3/Pe3LZZb1v12jgl7/sfV9m5onR8Hauvrr37ZMnwxNPSE643JxTRkZGZmgYc863RqPBaDTi9XppaWlBFEWMRiO17QmfMmcVl10mLfPPmAHnnDPS1nRiNBpRqVTMmjWrY5vFYiEyMhKrtYXoaCPR0c7j2zsjvlOmSM5hb90zb71Vcm57RrNjYzudzp7ExkpfPRGEzihsT+Lju6d5dOXKK3vfHhYm2dcb550nffWktLQUi2XD8YZYOhSKSR37wsNhyZLer9fT8W9HoZAc3N4IDu4e6fX7/eTk5DBhwgRmzQrCbrdTUvIVkV1Cz2o1xMV1ntOeI26xWDAajWRkZJxxBZ6CIOXQBwZ2brPZpFSjBQtGJkVLRkZG5mxjzDnfgYGBeDwePB4PgiAgiiIej4fArv9tZM5Iiopg2za4+ebOZXadDh588MQI7UjTVxOZJUuWkJOTg9vtxu/3o1AoCAgI6Ci4TEqSvnqjNyf6TGX16tWYzWYuvPBCIiIiaGxsJDc3l9WrV3PXXXcN+fh+vx+Xy4XP50MURXw+Hy6Xq88VMpPJdDxSL32mtLa2UlFRwSWXXHLGOeBdOXgQ/vUvaTUlOrp7rr6MjIyMzMA4K51vQRAuBS7vbZ9arcbn8+Hz+VAoFPj9fnw+35iTcjvbyM2VnASQVBq65nOPNscbJNm7lJQUNm7cSENDA5GRkSxZsoTY2FgUCgU6nQ5RFDucuaFgNEdq9+zZQ2ZmJn6/H5PJREBAAJMnT2bPnj3DMr5KpSI7O5uSkpIOycfs7Gxqamp6PX7r1q04nU4mTJhAUFB7pLyErVu3ct111w2LzUNB14leXp7sfMvIyMgMBmel8y2K4ieCIGwFburrGI1G06HzLXPmk5EhyeFZrf0rtBspTCYTpaWlXHDBBR2R79LSUgoLC5kxY0a3tucWi6Vbod9gjT/YOtqDid1up6mpCUEQ8Pl8KJVKRFHEbrcPy/hGoxGdTsf555/fsa19ktIbhYWFzJ49G71eD4Beryc5OZmcnJxhsXeoCAqSUokiIzsLO2VkZGRkvh1npfN9MjQaDT6fj6NHj+L1elGpVOj1ejQ9K85kRiWiKEmrbdkC110nFRGCVKz34x9LxYVnQqFYXzrWH3/8MbNnz+52bNeCy6Eef7Cd/IEiCAImk4kpU6Z0FEYfOnQIYZiSjjMyMlizZk2f6T898fv9tLS0UF9fT1tbG1qtFo1Gc1YUcneZf8jIyMjIDAJnvfP99deSwzZ5siSr5fF4UKvVzJ49G6PRiMVioaCgAE9vmmAyo46yMnjsMel1QgJcfHHnvuTkvs8TEamnHhUqwgnv+8Bhol3HuishISEoFIpuknrACT8P5fiD7eQPlNDQUGw2G9XV1Wi1Wtra2nA6nYT2FMceQvqT/hMTE8NXX33F9OnTiYqKoqmpiX379jFlypRhs1dGRkZG5szgrHe+d+yQtJ5TUuD//g+8Xi+xsbEolWrs9jZUKhWxsbEcaW99JzOqaGzs3l0xOVlyumtrJe3o08GPn+d5ngYaOJdzuYRLhsbYftCuY93TyU5PT6eiogLoXog5b968YRl/sJ38gRIcHNwR8W5sbESr1RITEzNszbDy8/P7lf5jNBoxGo3U19dTW1uLQqHo2HY2UVsrKZ9cMvJ/QjIyMjJnLGe9893eEW7ScZWygIAA1Go1hw+7OHp0MXp9PZMm+QgIKBs5I2VOoLQU3n5bathy//1SkxGQpM5uuknSijYYTu9aChSEEEIDDRzhCBdzMQIjq5nWqWMtdIustutY5+fnU1paitFoHJI87L7UVgbbyR8ogYGBmM1m3G43brcbhUKBy+UivKdA9xDR35UBlUrF0qVLKSkpobW1FYPBwIQJE/os0DwT+eYbeOEFqaYiIUHSbZeRkZGR6T9nvfN9//2STFbXgFl9fT1O52RAi802HotlXbdzcj6tJ+zgDsKuvxhj7CiUyjgL8Xi6NyQJDpYcb4CcnO5NRgbih2aRxQQmMJnJI+54t+P3+0/IKR4u4uPjmTdv3pA7+QPF4/FQU1NDenp6x+SgsLCQ4GFqu9jflYH+FmieiUycKDX1cTqlbqWy8y0jIyMzMM565xu6d7Pzer20trYyfrwHo7GFxkaRtrbaDtUT0S9S/fi7OI8VYNuyB+NHnSLRbrfUWXA0StedqezeDZs3S90SH3yws4lHRATMni1pC2dlfftxJjHp1AcNI/n5+cycOfOEtIatW7eiVquHRYUkPj5+1DjbPWlubiY7O5vAwEDcbjcxMTEEBwdTXl4+LOP3d2XgVCsZZwMGA9xwg9Qwqa9GRjIyMjIyp2ZMON9dUSgUpKSk0Ny8F6/3a8LCVISGpnTkfLc2uvDbpc6CyunTunnaeXnSsmtUFNx5Z/dcZJlTY7dLedpd24vbbHA8xZmqKqkotp0f/3h47RtO+kprKCwsJDs7m4KCgo70haioqCFRIcnJyTlBZ7yn0spIoVQqUavViKLY7btSqRyW8fvSYT/ZMxjJlYzhoq929TIyMjIyp8+Yc77dbjcul4uJEyei0+lwOp2YTCbcbjcAwVFaLt1+D3Wf7CFodnelgpoDDQR4AmlsDOrmQAL85z/S98xMKWIr04kowj/+ASUlsHhx9xbkGRmwa5f0fbiajIqI+PGjZHgcud7oK62hpaWFsrIyxo8fT1JSEq2trZSVlQ16oWFOTg6vvPIKkZGRxMTE0NbWxiuvvAIwKhzwsLAwLBZLN3WT5uZmwsLChmX8vnTYY2Nje3XA+1rJGC3SjUOFzSalosg9ymRkZGROnzHnfHu9Xux2O/X19R1Lw3a7vVuzHXWAQPwV2d1PFEXmHX6RqU31lJz7A9Tqzv0+nxQV93olnemuvovJJKkDxMZKOZJnc8qK2y0VSh45AitWdP5DFgQp514UIT+/u/MdFQW///3w2OfHzyY2UUgh05nOQhYOz8C90FdaQ2BgIOHh4YQcn92FhIQQHh7eoYAyWKxevZqQkBCSk5M7JqFut5vVq1ePCuc7JiaG/Px8EhISOtrLFxcXk5GRMSzj91cH3WKxoNVqu61YTJgwAYvFMiz2wvB3LK2thWeekbpg/vjHnSljMjIyMjInZ3h0u0YRXq+XxsZGWlpacDgctLS00NjYeOpOlwcPEm4tY0K0nSWp3ZVRHA6YOlVq7tI1bQIkR3T9enjpJamosCuffAIffig5pGcSLS1w+LDU7KYrpaXwxBOwbp30uitz5sDSpXDttZITPhIoUFBKKRYsHObwyBhxnPaCR4vFQm5uLhaLhXnz5pGYmIjD4cBmsyGKIjabDYfDMej61qWlpaSmphIYGIggCAQGBpKamjpqdL6joqKYNWsW27dv5+WXX2b79u3MmjWLqKioYRnfYrF0TIDaCQkJ6dOZ9nq9bNmyBavViiAIWK1WtmzZMmwddNs7lhqNRjIzMzEajXz55ZeYTKYhG/PDDyUp0L17JSUUGRkZGZnTY8w5306nE61Wi0KhwOfzoVAo0Gq1OJ3Ok584dSr87GdSyf/ll3fbZTDArbfCX/8K2T0C5larFBHSaDq7Mbazcyd89hns29d9e3m5pNLy5JNS5LwrFgs0N0uFn0OJ2QxffQVr10rFkF15+mnJyV6/vvv2mJjO18eOdd83d670tk2ePLIRsilMwf18PdvuL0JE5Le/PcCOHQ20tflYctFWANauPcbf/lYIwN135bJvbxNNTW6+e9lOAN57r4pnnpZmHj/76V4OHbJSXe3kqqt2AfDqK2W8+ILkxF5//deUl9s5erSVH/1wDwDPP1fMW29VEB8fz4svBnPBBZczbtwc/vpIHSkpKeTsiWLbVjslJSU8cL+T8LA43O5E7r0nD4CHHjrEZ5/VArBo4Rf4fCJbttRx//0FAKd1T3Z7NA0NTh59VHpfdu2CDetFNBrNt7ongFWrvqSuro28vGZu+4X0y/3YY0f46KNqAC5esZ3WVg9f7zL3eU9ut5fcXA8K4UruueceRP+VHDjgxun0DstzMhqNPP30YR577GvWrVvHddfuIyeniObm4F7v6e9/V9DYaKe+LoQvtowjKCiILZtD2P2181s9p9O9p+uu3UNiYiJbt4p8+KEU+X71FT2bNuV96+fk8fT+YXPjjVJB9KWXwsyZvR4iIyMjI9MLygceeGCkbRgSHnzwQQ1w33333detdfxTTz1FcnIyoaGhaLVatFotgiBQV1fHXXfd1fcFBUHKHZkzR+pl3o7fL4V6ExJArT7BsUxPlyK+WVndnW+/X2oA5HRK+c6TJ3fuKy6G7dulqNKCBZLsXjuvvgqvvy5FmhYu7NzucMC//iWlvwQGQmRk574DB2DTJinCfs453e177DH49FOpGDItrXP7oUNStL6oSEqj6WpDUZHkXPt8cOGFnds1Ginyf9VV3a81mhjPeGI+2U5CbBiTzj2fouDtfGfiFAx6DWmTgolPCCQkRE1Kip7wcA3x8YEkJQURFKRi0iQDcXE6jMYAUlKCMBoDGD8+kKSkQIKCVKRNMhA7Tkd4uIbklCBCQwNITgoiMTEQvV7NxEkGYmK0REZqSE4OIjhYTUqyvnP/RAOJiaE0NZUxc2YCM2ZMJjZWQFA0MXduJpkzxxEZqSEmRkty8nGbJhoYPz4Qg0FNaqqBiAgN48bpOmzu655cLhPFxQeZMsVIdHQAbreFxoZDZGVP5ftXLh7Ue4qO1hIdLdlsMKhJnaBnfGIgeoOa1ImGXu+puaWEY8dKcbaVcfDgbnz+RvT6NsaPj2bVqnlD/py02jb27fuCadOimDo1haAgO+Xle5k371zmz590wj3l5HzCnDmT8PvtaHXNGAwiKRPCcTgrWbZs0YCf0+neU0N9HjMykwgzqohP0GAwKEmI19DmqiY7e8a3ek433bSHsLAAkpODuv0tBQRIk+opU+SUExkZGRm3280jjzwC8MgDDzzgPtmxwslaJp/JCIJgAKxWqxVDl24sqampZGZmEhERgUql6khDyc3Npbi4uP8DrVsHH38s6W/deWf38O9p4PdL6Shd5gccOQJffAFNTdIlg7r8z/vb36SUjsmT4e67O7ebzfDb30qvb7xR+qfYzpo1koMN8O9/dx//N7+Roulz50rntVNaKo0FcMcdUuC/nbIyadIQGyul2pyptDosPFD0CH+f/gjVzmNEa6LQKDWnPnGIGY7cXZPJxHPPPUd5eTltbW1otVqSkpK49dZbR0WB4EMPPURVVRXjxo3ryEk/duwYCQkJ/H4YigTWr19PfX09hw8fprm5mdDQUCZPnkxUVBTLly8/4fj77ruP2bNnn1AgmpOT0/5hPOT29uyoabFYsFgsvdrbH8xmF2FhknKLcAovWxShtbX7ZF1GRkZmLNDa2treiyJYFMXWkx075gouRVHE7/cTHByMRqPB5XJRX1/PgCYhotiZ3KzRdBcUP00Uiu6ON0hR474ixytXQl1d790dExPB5ToxvUWrlY5vL3rs+v/znHOkqHlKSvdzEhLgz3+WnOueSgbJyad3b6ORXbuKeOrLX/DdPTHENamZtOp3vPB1OesN/yTJPZ001zz8eFEx0jJxki55qxUqK1xAyaBe3dJs4dChcTQ3B+L1eFGpVTgcobzxRi3GUNegjjUQNmzwEhs7E8ROdZMmSwwHD9YQGTG470VvbN1ajV8UCQs7F61GS3NzG+vWNaEQqqmsOHH82tppvPFGLdHRIlqNljZXG3V1dYSETOPf/xp6ey3NkZSUlBAeZkOn0+J0tmFuMjNhwoRe7e0PU6cFM2GCnhuu382GzxagVPbugHs88Npr0kfib35z+h1oZWRkZMYaYy7ynZGRQWpqKsHBwSgUCvx+P1arleLiYvIHUvkoilKOSFKS3HniDOCuexbw1neKEXzg2ZmJ48Ol+Ks7VytUU48SsHwHjn/8aAStlJEZXfzznzNZsDCKtLS+PeqvvpLS4kBKs7v55mEyTkZGRmYU0J/I95hzvr/zne+QmJiIWq3G7XYTEBCAx+OhoqKCnTt3Dp4BTifodIN3PZlB4cF/Pcpa7+NUJByvNfZD0JHZGL9ciaZBkqrxq10IXjXHrvo70R/fisoxNGvobo8bp8OJz+dFqVShC9QRoB6eiLvJZEKj0eDz+fD5fSgVSpRKJS6Xa1SknZhMJnx+H2qVukMS1OP1oFQoh8W+mppjeDxetFptR3paW1sbarWK2NhxvZ4zks/T7XFja7WhUChwuVyoVCr8fj8BAQH4fD70Bv2AbGlp8VBcbCMgQMEXXyyi8LAVv0/kph+euPwlivDKK1Ktys9/fuIKnIyMjMzZjOx807fzff3111NcXExCQgJBQUHY7XaqqqpITU3l9ddfH5zBDx6UWmH+7GfdKyllRgVNt/yMj6o+4N/f01IW2fn7vzxmGb9Mu5PpoVJVaqH1MOnBk/nQ9BEh6mAuiF48aDa0S8MlJiae0L58OJzLO+64A+CEFSCAp59+esjHPxXPPPMM+/fvx2AwdNjX2trKjBkzuP3224d8/IcffhidTtch9RgYGIher8fpdPK73/1uyMfvL+053wUFBR068TabDZvNRkpKyoBzv9vafCyYv4Xc3GYSEnS88+4cYmJ0JCT03hHL65WccLnpjoyMzFijP873mJMaBKirq+PAgQN8/fXXHDhwgLq6usG7uM0mVTW2y484HIN3bZlBIfiXv2LZ/gD+90cfL6puY7p6IgDrazdw0bblXPP19ext2kd6sDRxSglKZpxuHHavg7cq3hkUG/Lz89HpdBQUFLBhwwYKCgrQ6XTk5+djMplYv349b731FuvXrx8SrWafz4fT6SQ8PJzx48cTHh6O0+nE5/MN+lgDJSYmBo1Gg1qtRqPRENPPYuZvg0KhoLi4GIvFgsfjwWKxUFxcPOidRgeLdl3y9gY/AEFBQdhstpPqk58KrVbJO+/OxWhUU1Xl5P4/HiQqSsM9v95PS4vnhONVqhMd755SpTIyMjJjndH5n2QIycvLIzExkQULFrBs2TIWLFhAYmIieXl5gzOAXi/JhqjV0vfh6pkuc9oc8GmpzfwOCgTS7vuElx4ReDPzJZI8UvfETXVbWLFjJau+uoon1n5KpGMSiapUXn6vgEZXI/n5Lby5fQduv5uPP66mvr4Nq9XDu+9WApD7jYV9e5sAWL26CovFjdns4sMPJSd6z24z27eVU1BQwPZtXtxuBSaTjQ8+KGPfvn38+U/v8tprm9m0aROPPZbDiy++xu7dJR062Fu31nP0qDSpfunFUvx+kZISG1u2SJPIzz+vpbzcjtfr55WXpYZQhw9b2bGjAYB162poawskLCyG7dt9lJaWcviwHa83GZVKNeB7ystrBuDttyux2bzU1DhZu1YSfP9yZyOHDkmR9ddeK8fl8lFZ6ejznlqarYSHpxMVtZilS5cSEbGIyMh0mi3WPu+putqJw+HlzTclHev8/Ba+3mUG6Pc9mUwmKirUNDUZUCqVFB+Norm5jaKi+gHf00Ce0+neU36+npaWFiyWEPbvtx6/vhVB0FNZ2URhoWHAzyk5OYhXX8tGEGDTpjoeeaSQWeeGERBw6n8fu3dLKkxVVac8VEZGRmbMMOacb6fTyeTJk4mOjiY0NJTo6GgmT5586iY7/WHWLPjLXyAzc/CuKTNo2P5wC1+F1IFCgbLyKNbv38L5UReQve1hPpz7HtNU5wKwvWEHj/h+yk0Hr2Jb/Q7Kv1Fzx6TbqK9v483Gl6hyVJFXWEdzq5O2Nh/5+S0AHKtxYqqWfp/y81toa/Nht/s6nJoqk5PSMgsul4vm5hAiI2PR6yOoqVGwc+dOCgrqgBDi4uKwtoRRUHCIDz9cT9ERyZErK7VjbpQkRHNyJOfR0uSmpNgGQPFRGxaLG59P5JtvpIinudFNWakdgCNHrLjdCkBJkzkEg8GAz6entVWDKIocOmTFbvf1+55qa6UQZ15eM263H5vNS2GhtL+8wk5Dg7Q/9xsLPp9IS4unz3sKCQ3FbHZRVuZAFEVKS52YzS6CQ0L7vCer1YPXK7I/V9pfX99GRaW0v7/3VFNTg9Wqoq7ORVNTE1UmBS6Xl+pq84DvaSDP6XTvyeGIoKKiAjCyb18ZGzduZMvmoxQXV7A3Jx+XK2LAz+mZp4+SkBDIb383BYC/PFxIcLCa6mpnx0SmN+rr4eWXpR4C6NZqXAAAIABJREFU//qXlJIiIyMjIzMGc74nT57MihUrCA4Oxu/3o1AosFqtrFu3jsOHh7DleE+NP5kRw9/cjBASQtPtt1Lz9ouEZMwkQNAQ/p8XUE2UUlC+Nu/h8SNPsrVhW8d5s4wz+VXaXVwQtbhD7/jNircpsZXyx6m/QxTFU+ogt3PHHXcQGRnJ+PHjO3SsKysref/99zn//POJjY1FqVTi8/moqanh2LFj/O9//xu09+Dee+/F5/MxZcoU9Ho9NpuNQ4cOoVQq+fvf/z5o4wyU9evXk5+fT15eXkfO9fTp08nIyPjWutWnw0UXXYRWqyUoKKgj59xut9PW1sbnn38+5OMPBJPJxJYtW9i8eTMqlYrAwECCgoIICwvjmmuuGXAtwbp1NZxzTgixsTouW7mDjRvrCA1Vs3r1PIqLW/nRzSl9nrtxI2zYAD/9qVz+IiMjc3ZzVuh8C4KQDtwJRACbRVF8XhCEIOA5wA1sFUXxzf5eV6fTUVpaSkxMDGq1Go/HQ21tLbqhVCaxWODFF2HxYrkP8yhAERqKa9s2vKlxaHQ62ooOsvans4jRHuR7SM73eeFZvDf3Lb6x5PL4kSfZWLeJfZZvuObrG5gecg53p93JspglXJt4NR6/B4vbwve/upoN89eiUpz6zyooKEiKbFut1NXVodPpiIuLw+v1EhoaisFg6HC+nU4nBQUFg/oeJCQkYDabqaqq6piEGgwGwgegVT8U1NXVsXnzZrKzs4mLi6O6uprNmzcTFRU1LOO73W7GjRtHXFxcx3Oorq6mvLx8WMYfCPHx8SgUCmbMmMGECRM6CspLSkrYunUr11133YCuu2JFLA6HlyeeOMLLr2Qx57zNVFY6+PWv97Nt+2I+/7yWWbPCOhrxdOWii+C88+SmOzIyMjJdGda0E0EQXhIEoV4QhIIe25cJgnBEEIRiQRB+AyCKYqEoircAVwLnHj/0cmC1KIo/AVYOxIagoCBKSkqoq6ujubmZuro6SkpKCAoKOvXJA8Hvh8cfh6NHpQ4UZvPQjCPTLxQREQRnzqVi1TQAFnxRz4LtLRTvXsfP93Wqacw0ZvLGea+yecFnXBy7AoC8lgPctOdmFm9dwprqT1AKSowBRl7NfhGVQsWjhx/nG0vuScdPT0+nvr6e+Ph4Zs6cSXx8PPX19ahUKpxOZ0fTJ1EUcTqdg17ol5qa2jGu0WjssCM1NXVQxxkoO3bsICsrC1EUKSoqQhRFsrKy2LFjx7CM7/f7cblcWK1WbDYbVqsVl8uF3+8flvEHSmFhIcnJyej1egRBQK/Xk5ycTGFh4be6rlqtQBAEQkICeOedOQQEKNi/v5k77/iGvXstVFX1XlguCCc63mfpYquMjIzMaTPcOd+vAMu6bhAEQQk8CywHpgBXC4Iw5fi+lcBOYPPxw+OB9tKdAckyOJ1OtFothYWF5OTkUFhYiFarHdyc764oFHDFFdLr2bPlENAoQT11Ktq55xO2fBVaZRDGoxaUBw4xThPNL1JvAeDhQ49QYZdyWjNCp/Fy1n/Ztmgz34u7DAGBQ9ZCfrz3FuZvWczqqg+J1kQDsDBqPklBiZTYSlhd9WGv4y9evJjg4GAqKio4cOAAFRUVBAcHk5aWRk1NDbW1tZjNZmpra6mpqSFxkBs4ZWRk4HQ6mTZtGsuWLWPatGk4nU4yMjIGdZyBYjabiYmJQaVSodFoUKlUxMTEYB6myavD4cDr9VJaWkpBQQGlpaV4vV4co1y9yO/3nzBB6G1bf1GrFfzqV2lUVNixNLt58kmpnuWVV8qJidaSkRHCnt2nfjb19fDXv8IQCPjIyMjInDEMq/MtiuJ2oKnH5iygWBTFUlEU3cA7wGXHj18jiuJc4Nrjx5qQHHAYoO0WiwWVSsWMGTOYO3cuM2bMQKVSDViK67SYMQN+9zu49lpZAHcU4T18mOQ3viF41dUICHi++grtpHTS26TitHNCzyFKG8l+Sx6f124CID14Mv8+9zm+XLyVKxNWoRSUFNmOcus3tzNvywLerniXGaHTCQsIw+v3oRSUAGyt347H3ynNFh8fz8qVK0lLSyMmJoa0tDRWrlzJpZdeSmRkJI2NjZSUlNDY2EhkZCSLFw+exnj7+PPmzcNisZCbm4vFYhk2jfHTQRAEDhw4QFBQELGxsQQFBXHgwIHTzqn/tjidTmpra5k4cSLnn38+EydOpLa29qST9OGQiDwV6enpFBUV0dLSgt/vp6WlhaKiItLT0wfl+i3NHqpNTm7+cTLXXy9NCO+44xs2b6rj0X8cwefrO6ztcEiOd3k5PP+8rMIqIyMzdhn2gktBEJKAtaIoTjv+8ypgmSiKPz7+8/VANrAaKc1EAxwQRfHZ4znf/wTagJ295XwLgvBT4KdIznlmz4LLxMREzj33XKKjozsKqerq6ti7d+9xtYBhoq0N6urklvSjAE95OU3z5yN6vWgvuQRlYiKGLo1UvrHk0uhq5KLoC1lb8ynLYpaiVkiTqDJ7Oc8cfZZ3Kt/DK0pyDuMDE7h94i+4KuFKNEoNbr+b27+5iydmPIbNa8MYENpxfk9MJhNr1qzB7XZ35GIHBASwcuXKUeMYDwfXX3891dXVTJ06ldDQUJqbmzl48CBxcXGD1wzrJMyaNYvk5GR0Oh0+nw+lUonT6aSsTJKD7MlIN03qaserr75KdXU1bW1taLVa4uLiuPHGGwfVjk2b6pg6NZhLL9nBgQMtJCUF8vXui1CpBDweP+Hhml7P27AB/vc/WLoUvvtdaWFQRkZG5mzgTCu47C2UJYqiuBXY2mOjHfjhyS4miuJ/gP+0q5303K/T6dDr9YSEhKDVamlra8Nutw9tweWJRsLrr0NuLnz/+7BwoayEMkL4W1tpvuIKNJdfjvO9d2kryCP6uee6HTPTKC2x2zw2ttZvZ0XsckpsJURrokkOSuLxGY/yy0l38czRZ3mz8m0qHVXck/cbnjjyFLdNvJVrE6/m3+dK13z66DOMDxzPNYlX4fV7TyjObI+I5+fnY7FYMBqNZGRkjCnHG0Cj0RAbG8uhQ4dwu90EBAQQGxuLRtO7UzfYREREEB4ejk6n62hv73Q6aW3t/fM0Pz+fxMREjEYjQMf3/Pz8YX924eHhREREdKjvDEWA5auvGomO1vLue3M5L3sT5eUOfnjTbs4/P5KgIBU/v7X32oGlSyE1VfqSkZGRGauMBufbBCR0+TkeODZUgwUHB3fkcrb/U1epVO2zleGhuhq++UYqxszPl5xvmRFBYTAQ+sFqvlTuYtz/XiWg/Ci2xx/Hd+QIoS++2O1YvVrPYzMkGb4PTB+RETKNJTEX0uJpIT4wjr9N/wt3TbqdZ4uf57XyNznWVsNv8//Ak0XPcGvqz7gx6QZ+k34voiiS31LAgwcfYvXcEztmxsfHjzlnuyeiKDJz5kzGjx/fsa2yspJDhw4Ny/gzZszAZrOhVqs7nFiPx8OMGTN6Pd5isZCUlNRtW0hICKWlpcNgrUR71Fun0xETE0NSUhLh4eFYLJZBnwT88Y9T8ftFdu5s5OVXsrj8e1+yfn0ts7PC+PU9k2lp8RAScuLqjiDIjreMjIzMaFj0ywEmCoKQLAhCAHAVsGaoBjMajZSVlaFUKgkPD0epVFJWVtYRqRoW4uPhnnsgJQV+9CM56j3CqBKTUK7eQOn30vDgxfbh+wTedttJz7l38q9YHruU/OYCfrHvTgA8fg+xulgeyvgTey/6ml+k/pxAZSD1rnoeOPhnzv08m6eKnsHmtZERMo3/nvs8oijyk5xbqHQMfwvA0ZCj3Bepqak0NDTQ1NSE3++nqamJhoaGYVNjWbVqFTabjYaGBurr62loaMBms7Fq1apejzcajbS0tHTb1tLSMmyfK+1pLyAV0+r1eg4dOoTZbP5W7eVPhsXi5vnni1m6NIb/+40k4v3nPx1i/foaFi/6grq6U/eV93rhvffg2JCFW2RkZGRGH8MtNfg2sAtIEwTBJAjCzaIoeoHbgM+AQuA9URQPfstxLgWe7m2fTqfDaDTi8/lobW3F5/NhNBqHN+0EJMf73nuldvQyI4ogCCQHTKL1hqXo1AaEymq8+fk43njjlOfOME7njfNeQRRFLt5xGeV2qW4gShvJ/VN/z76LdnP3pDswqAyY3U08XPhXZn1+Ho8efpyaYzVs2LCB5JJE8rce4L2Dq/msduNQ3y7Q6awZjUYyMzMxGo18+eWXo8YBnzFjBhkZGdTX17N3717q6+vJyMjoM/I82MTGxpKQkIBSqUQURZRKJQkJCcTGxvZ6fEZGBhUVFVgsFvx+PxaLhYqKimFTj2lPe4mOjsZms6HX64mKiqK8vHzIJgHh4RrefnsODoePm25MZvHiKEQRfnjTHt5+5zyio7V4vX2rrPj98MQTsHmzXIB5MkbzJFlGRmZgjLkOl0uWLCEhIYGoqKiOJjv19fVUVVWxcePwOD598s03UFws5YHL0fBhx2+x0PrwwzjfegtFfDwB2dmEPP44wmkq1LR4WghRh/Ba+RvYvXZ+nvqzbvv+W/oS/yl5gWZPMwBaUctK/cVcG3MNgg12VO5kyjlTWDppCWuOreW7cStRCEMzP16/fj1Go7GbU2axWLBYLMPSQfJUDEUBo8lkOu1c+jfeeIOKigr0XSbHNpuNxMTEPpvV9Of6g81bb71FZmYm9fX15OXlkZCQgF6vJz8/n7i4uCEt/HznnUrKy+3cfHMK2VmfYzI5mTXLyP0PTOWtNyt57fXsPs/99FNYswaSkuDWWyEkZEhMPGMZLYW8MjIyp6Y/BZejIe1kWBEEgdjYWEJDQ9FoNISGhhIbGztsEmZ9sm8f/Oc/Uhho7dqRtWWMYv3d71BNm4agVuM3mQiYMwexH+G4ELXkOXwv7jJWxl2Cw+vk1n234/V7CVGH8Ou0u9l30df8Pv0+DOhpE9p4z/4BV5Vey9ue95gWNw1FmUCT28L+5jwEBEpsJd0kCgcLi8VCSA9PZ6jSEwbCYEsh9jfSn5OTg9frxePxdHx5vV5ycnK+zW0NGUajkaNHj3L06FHMZjM7duxg06ZNOJ3OIXfUrrpqPL/5TToOh5c33zwPtVpg3z4LH39UzRNPzjhpweeKFXD11fDrX8uOd290LeRVKBQYjUYSExPJz88fadNkZGS+BWPO+Y6Pj6empgalUklUVBRKpZKampqRjyJMmABhYaDRyBVJI0TIs88SdNNN6K6/HhGR1scfo3HRIrxlZf26jkFtIE4Xh1JQcEX891ApVLxXtZqDLYcwqA3cMek2fm+/j1sjbyFMGYZTbOPtpnf5qflWXrS/gk/08qdp9yMIAk8V/ZO85gO4/e5BdcJHOkd5uOmvE1NdXY3L5UKv12M0GtHr9bhcLqqrq3s9fqTTeCIiIti5cydarZbvfOc7zJw5E1EUWbJkybB9tv3qV/vRBar4xz+k1KAXXyzj009ruOVn+/hyZ2Ov5wiCVG8utz/ondE+SZaRkRkYo0HtZNA5nvN9eW/7Fi1axJ49e8jNzcXlcqHRaAgPDycrK2uYrexBaCjcdRfY7ZCcPLK2jFEEQcD6/lscEYoI1rShO1ZB+MOPohrg89AoNVwQLTXH0Sl16JQ6Gl1mcpr2EmOMJrwxjOj6CHYKX7HHuJcWpZXt6p3M3jSXa8Zfxe0Tf8HTM58A4OPqNWxv2NmhtvJtycjI6CjQ67mcPRroutyelJRES0sLX3755YCjuBaLBa1WS0FBAa2trRgMBiZMmNCnE+P3+2lubiY6OhqVSoXL5aK5ubnPTpH5+fnodLpu14+Kiho2qcHGxkamT59OaWkpeXl5BAcHM336dBobe3d6h4L335+LIAiMG6dl1y4z77xTyW2/2Mcbb55HVnbYaV8nLw+ioyEmZgiNPUNonyR3nRSfzZNkGZmxwlkZ+RZF8RPgjt72paWl4fP5mDhxIueeey4TJ07E5/ORlpY2zFb2QlTUiY53WRkMU0ttGQicO58DP8ug6IZz8ODB/s9/0vqXv+DaufNbXffScReTok+m0dVImb2MiIgI/rf/IwK1gdw0/gZ+5/g/5hRnEa2Mwu1380r5a2Rvmsfdub+mzF7OZXEreSjjQRxeJyu2r8Th7bvT4ukw2jtcDvZyu9frZffu3YSHh5ORkUF4eDi7d+/G6/X2evy4ceNQKBQd8oaVlZUoFArGjRvX6/HFxcWUlZV1u35ZWRnFxcUDsre/lJaWYrfbmT59OsuWLWP69OnY7fZhlToUBIHqaieXrdzJs8/NZOrUYNra/PzfvXmUltj44U17TtoBE+CTT+C556SvtlOLpZz1jHQhr4yMzNBwVka+T0ZjYyNZWVkcPnyYuro6QkNDycrKGtYI0WljtUr/hbxeuOkmmD59pC0661HFxTOr7jyaJzai1Zbjr6lBdDpRDVIq0OTgNCYHp7Fu3Toq0k3k5ueybc92wg1hXD7pu4QpwrBlOHjy6NOU2ct5s/Jt3ql6j8vjvsvdk+4g1ZDKU5mPE6jS8WLpK0wNmcJ54QNbtRnNeuIWiwWDwcC+ffs61DvGjx8/4OV2hUKBRqNBqVQiCAJKpRKNRoOijxaLWVlZ7N69G7PZ3NEpMigoiOzs3osHrVYrSqWS7du3d0S+o6Oj8fl8A7K3vzQ3N5OYmNhRIKrX6wkMDBzerr1AXJyO7TsWo1AIvPJqNosXfUFJiZ3f3HeAW29NRak8vdqalhapHcKECUNs8CinfZKcn59PaWkpRqNxVE2SZWRkBsaYc75LS0upqKjoyOm0Wq34fD5sNttIm3Yi+/dLDjjAaLTvLGWaIxVnSRjc+CPs//43rk8/RXf99fjNZtRTpw7KGCUlJVzYuhBtqJbcxDzKhAqM1UaarE3cveJuvp9wBR9Vr+HJoqcpsh3lfdMHrDZ9yGVxl3L3JElXfFrIVMbpYmlwNbKtfjurEnrNtOqTkVTnOBV+v5+cnBwmTJhAdHQ0drudnJwcIiMjB3Q9hULB7NmzqayspLa2Fr1e3/Fzb6Snp7N7926SkpI6OuE2NDSQnp7e6/FWq5XKykqmTZtGeno6DQ0N5OXldWsSNJQEBwdjNpsJCgrCYDDQ2tqK2Wwe3uZhx1GrFTz3bDHmJhcvvDibH1y5i0/X1jBnTgROpw+lUuDii3tfQbjkEklycMECOe2kndE8SZaRkRkYY875zsnJ4dixY4SFhaHRaPD5fOzfv5/6+vqRNu1E5s+XdMCPHIG5c0famjGDKjkZw/334ykrw/Haa/hqa7E//jgB2dmD5nxXV1ej0WhISEjgUs3FtLnayPcV8HLE61xRdQUF+QW4m9u4L/Qe6lMaebXxdQ5ZC/moeg0fVa/h4tgV/HLSnSQExlNiK8HqlSZpe5v2MSN0+glt63sy2DnVg43f78flcuHz+RBFEZ/Ph8vl6jPn+lQYjUZUKhWzZs3q2NY+6eiN/q6QNTY2MmHCBJxOJ0ePHkWj0TBhwgRqamoGZG9/SU1N7ZBN3b9/P62trajVaoKDgzGZTMP+TG/+cTIKhRTl/uWv0nj8sSP88Q/5PPHEDM6bE9HneYIAP/jBcFkpIyMjMzKclTnfJ+PgwYOo1WoSExOZOnUqiYmJqNVqDh78Vn19ho6ZMyUtrq5SiH4/DNNy9ljF39xM07Jl6G64ARER9+7d6K6+GtEzOIojDocDlUrV4UyKfpFgDMzbms2ur3bxqvJNSBMIDwsn8JCW11Jf4tWsl5gecg4An9as44JtS7nu6xtp8Vj5UfJN+EU/zxx9DounmRZPC15/7/nMMPolzFQqFdnZ2ZjNZvLz8zGbzWRnZ6NSDSxekJGRwf79+9m6dStffPEFW7duZf/+/X3mzhYXF9Pc3ExWVhZXXHEFWVlZNDc395nD7XK5cDgchIeHk5aWRnh4OA6HA5fLNSB7+0tGRgYmk4mqqipqamoIDg4mKiqKzMzMEWmepNEoUakEli/bznXXjWf+/Ej8fnjooULCwgJ49p9HcbtPbyLV2gpNTUNssIyMjMwwclY63yfrcOlwOEhLS0OpVGKxWFAqlaSlpeE4U9qreb3w3//CSy9JTrjMkKAIDcV7YD2f3hZJS6AbX10t1vvvp+mKKwbl+kFBQcTFxWG1WikvL8dqtRIXF4fX7iUxMZE7429jauAUjmlr2B6+k4MFB1keu5SNC9bx9nmvc65RiuBurNvEsu2XcOVX17CnaS+vZr9IpCaCV8vf4D+lLwDgF0/8PRntEmZGo5F9+/axceNGNmzYwMaNG9m3b9+3Unnw+/04nU4cDgdOp/OkUXSr1Up4eDghISEoFApCQkIIDw/H2p4G1gONRkNISAhtbW1UVVXR1tZGSEgIGo1mwPb2F4VCQUtLS8ekSqVSERoaOmKTKkEQeOfdOUybFsrrb2QTG6ulocHFtdfswtLsweHoe3LYzsGD8Kc/SR958sedjIzM2cJZ6XyfTO1Eo9FgNps5duxYx5fZbB7Wf5LfijVrpE6Ye/fCunUjbc1ZjSdAIOo3L1B85RQ8eGhbv57Q//53UK6dnp5OSUkJNpsNv9+PzWajpKSE0NBQydFThaFVaBkfkMCF4RdgsVh4pPBvWDwWLohezKfnf8zque8wN3wOAFsbtrFy5/f43per2NGwk9tTb+WnKT+m3F7Byp2Xn9DoZLTrfNfV1fHBBx/gcDgICgrC4XDwwQcfUFdXN6Dr5efnM3PmTJYvX87FF1/M8uXLmTlzZp9OaWhoKA6HA5vNhiiK2Gw2HA4HoaGhvR6fmJhISUlJN1WKkpISEhMTB2Rvf8nPz2fGjBkkJiaSkpKCy+Xi2LFjfPLJJzidzhGbVEVEaCgpsXHTjXt4883zUKkE9uyx0NjgwusV2b694aTnFxRIZS+lpdLHnoyMjMzZwJjL+Y6Li+Pw4cPExcUREBCA0+mkurqauLi4kTbt9Fi2TAoHBQTA4sUjbc1ZTaKQxIHvL0I3ZTrq9x9EbGzE+cYb+M1mDA8//K26oqanp7Nr1y58Ph9qtRqPx0NLSwtpaWndnGCD0kCsKwZzqJlxOh/BqmD2NOWgElTMjzyf+ZHns6vxax4repLtDTv4snEXXzbuYnbYufxq0l0silrIC+f+C0EQ+O2BP3BT8g1MMkwc9Trf77zzDpGRkUyePJmgoCDsdjuHDx/mnXfe4aabbur39fqr852SkoIoijQ3N3cUaMbHx/f5zJOSkjh06BC7d+/G4/GgVquJjY0lKSmp37YOBIvFQlJSEh6Phy+++AKlUokoijidTtasWUNmZuaw2NEbKSlB/Oe/55KYGMRf/3oOv/51Hs89V0xUtBYQmT+/7yLayy+H8nKp/KVLur6MjIzMGc2Yc75BUgaIjo4mMDAQh8NBa2vrSJt0+gQGSs14AgKkbpgyQ4aAwKVL/oE3dz+Oq67B+eKL2F9+maCf/1xaA1cqB3ztxsZGLr30Upqbmzuk9EJDQ2lqauqQh+vpFLcXzbW4W1AqVPhFP9sadrAwcj6r577D3qZ9PF70JJvqtpDTtJervr6OzNAZ3D3pTpZqo7lk3ArGByaQa9lPjbJ2VEuYVVdXs3TpUlQqFTabDbVazaRJk/jss88GdL12ne+0tDSSkpJobW1l9+7dfep2Z2Rk8Prrr1NXV9chNRgdHc3111/f6/Hl5eV4vV6WLFlCZGQkDQ0N5ObmUl5ePiB7+0v7Skb7Sl5CQgJqtRqVSkV1dTVhYaff5GawEQThuOO9l6qqarKy/OzZo+Bvfz3El19dSEFBC6mperTaE/+e1Gq4997uJS8yMjIyZzpnZdrJyairq2PKlCkdS8N+v58pU6YMeDl7RDAYTnS8c3Kk7pgyg4qAQNvatWjOOw/BYEBsakIQBLz5+SekcvQHi8WCTqfD4XBgt9txOBzodDoUCsUpm99cFHMhi6MWUt9Wz4em/wFQYa9kRuh03jrvdT5fsJ7lMcsAyG3ezw17fsjirUswu80EKAJQCAoCFGri4uJQZCr5wdU/YPny5aPG8QbJWXY4HAQGBhIREdExUe6rKc6p6K/Od01NDSaTidDQUJKSkggNDcVkMvWpXlJUVMScOXMwGAxYrVYMBgNz5syhqKhoQPb2l/ZmLAcPHkSv12O1WjGbzTidToKDg8nLyxsWO/pCei9LuPTSCJ58airjE1U4nX6uuHw7zzx9lAN5zX2e29Px/hZ/djIyMjKjgjHnfLvdbjweDwqFouPL4/HgdrtH2rSBk5sLL7wAf/0rnEmTiDMEwx/+gPbii9H96IeIiNiefRbrfffhr64e8DW9Xi+fffYZJpMJi8WCyWTis88+w+v1Eh8fz/Lly7nmmmtO6hTH6GJ4ZuaTCILAo0ceY6/lG9x+N5MNabya/SJfLPycy8ZdioDAQeshbs75GQu/uJASWymLohbS6m1l7TGpbuCY89hJ1VGGm9DQUGpra3E4HPj9fhwOB7W1tX3mXJ8KhUJBYmIiu3btYvXq1ezatYvExMQ+ne+NGzcydepUwsPDUSgUhIeHM3XqVDZu3Njr8S6XC61W222bVqsdNrWT+Ph4UlJSKCsrw+v1EhUVRVJSEuPGjcPj8Qxbp82+kHLSE0lKCuehh2r44x8S0OkEysrasDS7mZ0VRlXVqYveW1ulvmN79w6D0TIyMjJDxFmZdnJc7aTXjiMKhYKCggLS09MxGo1YrVYKCwv7/Cd8RnDggPTdapUlCIeI0ucfoKrpK2KDRYItFrQ//zmKuDhEURxQ7rfFYqGuro6kpCT0ej1Op5O6ujpiY2PJyclh48aNNDQ0EBkZyZIlS5g9e/ZJr/fPmU8hiiKf123i4+pPeHbW00wJTue/s//FPa1HebLoaT40fcTh1iPcsu8XPHr4Me6cdDuPz3gUpaDkyaJnuCj6Ai6IXoxf9J9SJ3yomT9/Pnl5eRQVFaFSqToi4fPnzx/Q9bxeL0VFRWRlZXU0oTly5EifaSfl5eVKETjJAAAgAElEQVS43W4EQehw/kVR5NixY70eHxUVxZ49exg3blxHDv+xY8eIiooakL39xWQyUVpais/no+14X3a/34/P58Nut494al17TrogCPzgB+Gcc04gD/4pnnvvqeKj/1XzwAMH+WJLPVu3LerQB++JKMJjj0FNDRQXS90vR0l98GkxmptaycjIDC9nsMfZNydTOwkMDESpVGI2m6mqqsJsNqNUKgkMDBxmKweRG26QWsP95CfQ1ZmQ12cHjarrstj252zyfzodLz7szz1H809+gmvDhgFdr6SkhKioKJxOJ/X19TidTqKioti9ezfvv/8+iYmJXHzxxSQmJvL++++Tk5NzymsKgsCSmIt4fMajeP1eFm29iGZ3M5MME3lu1jN8dcF2rhl/FSpBRYm9lDty72bO5vm8Xv4mf572ABdGX8DWhu3c9s2dA7qnwWThwoWsWLECg8GAx+PBYDCwYsUKFi5cOKDr9TftpLW1laamJiIiIhg/fjwRERE0NTX16cRGRERQW1tLS0sLTqeTlpYWamtriYjou6HMYNKu265Wq3G73VRVVXH06FHKyspwu90jrubUVV1n5swgao652bvXwiWXSpO8v//tMH/68zR8PhGns/cAgiDAZZdJr6dMObNKXtqbWhmNRjIzMzEajSOivy4jIzM6OCud75Oh1WqZOHEidrudhoYG7HY7EydOPGHJ+IxCEODSS+H/2Tvv+Kbuq/+/r4a1rOG9t/EAbKbZBAiBLLKeJ0mz2owmzXrSrDZNR9qmvzbNapqEktE0SdOQklkaAk0KARzCNnsZvKdsy7LloW1J9/eHsILBBmyMbUBvvXhhS/deH8u2dL7ne87nM3Zsz/s/+gjefBNGiHHKucwU7TwSK7xketOR6Qz42tqQJiaiWLBgQNdraGhAoVCQmppKbm4uqampKBQKSktLSUhIwGg0snHjRoxGIwkJCX22O/SGQqpAJpHx4bSlGEIMvFH+V/5d/znpoWm8POFPbL1kI7enfp8QSQg19hoe3/sE09bO4p3K95gePpXnx/0Rj8/DTVtuw+IeHom6vLw8TCYTEokEtVqNRCLBZDL1aYpzKrrt5bslHa1WKwUFBX0m32q1GqvVitPpRBRFnE4nVqu1z0W62+1mwYIFgTglEgkLFiwYsna2bt32qCi/ckh31dvr9SIIAnFxcUMSR1/k5eWxa9cuvvzyS1atWsXuPesw6Ov5058mMWNGBF6vyPdv28pvf3OAv75Z3ud1JkzwD2Defbd/9vxcYaSbWgUJEmRoOS/bTk6GQqHAZDIRHx+PIAiIoojJZBr2ytCg09UFW7aA0+k35hlg0hLEjwoVPwh/mK7kQrz352B97jmcH31EyPTpCCEhKObN69f1fD4f9fX1WCyWQOtK9/ClxWIhKSmJlJQUrFYrtbW1A6qQxapiAbg6fhEiIq3uVv585BV+N/a3vDDuWR7N+jF/KX2dpdX/pN5h5Of7f8nLJa/y4Kj7+H7ybTyZ81PCQsJYXvc5UYpIZkUNnQzhnj172LdvH/Hx8eh0OhwOB/v27WPPnj0D2qrvbjE7lo6Ojj51zePi4ggNDeXAgQPYbDY0Gg3Z2dlYrdZej5dIJGRmZjJx4sQe1x8qfe3uyvKiRYtYuXIlGo0GpVKJ1Wqlra2NO++8c0jiOBlWq5XW1lY8Hg8ymYzklHDWrLbwwIOZlJdbaWpysXGjmdVr5uD1ikilvbefZGQMceCDQHfbzbHo9XoqKiqGJ6AgQYIMKxdc5TsyMhKPx0NERAQpKSlERETg8XiGbHt4yHA4/GUihQKmT+/5mNUKzSc3twhyIrLoGJQ33oh86lQkBgO+9nacn3+OOAAFDolEQmVlJQ6HA6lUisPhoLKyEp/Ph1arRafTIZFI0Ol0aLXaM1JWiVfFk6BKQCpImR45HUEQ+Lj2U3yiyDP5/4+iBVu4P+Ne1FIVTa4mfn3gaQq+nsYG80asXVbiVHGEK8Kxeewsr/t8wHH0h+XLlzNnzhzmz5/PjBkzmD9/PnPmzGH58uUDul5kZCSFhYX4fD7S0tLw+XwUFhb2+XcfGxtLY2Mj06dP5/rrr2f69Ok0NjYSGxvb6/G5ublUVlb2MOWprKwkNzd3QPH2l261k3nz5nHFFVfQ0NDA3r17aW9v58477xyQNvpgUlhYiFwuZ8aMGVx++eXMmDEDuVxOXf0BcnP1fPDP6UilAlu2tPCLn+9jxvSvMZmcp7yuKMKmTf4aw0hmpJtaBQkSZGi54JJvvV7PmDFjAlbMEomEMWPGnGC1fc6j08Edd8ALL0B+fs/HPv4Ynn4aVq8O9oX3E7G1lc5f/ALvj26hiy7c69YhLyjA20/lE5lMRmJiIna7nfr6eux2O4mJiej1epqbm2ltbcXn89Ha2kpzczOZmZlnHLterueKOL8EYbu7HblERr2jnjp7HU+P/TU7Fmzj4VH/R6gsFLO7hd8feoZJa6ayybyJBFU8ZpeZcpu/UlfccRivePaGe1taWrDb7axYsYJly5axYsUK7HY7LS0tA7qe2WwmJyeHXbt2sWzZMnbt2kVOTg5ms7nX4/V6PaGhobS2tlJZWUlrayuhoaF9vk7MnTsXp9PJunXr+OSTT1i3bh1Op3PAPer9JTExMSBRmZaWxpNPPskXX3zBmjVrhj3xBiguLiY8PJzq6mp27txJdXU14eHheL2HGD1aR1FRK7/+zRgAFi8u454fpRMdffJWQJcLliyBf/wDli0biu9i4HQvjo51QK2urh5wG1WQIEHObS64thOtVktubi52uz1gnqFWqykuLh7u0M4Ox7fTNDTAtm3+j8vKYIA9yxcqkogIJOs+5ePO15n/NwFdq5nOJ59EtNkIe//9U55fRRUePHQZuoiURWIwGAgJCcHtdtPW1obBYCAvL4+KigrKysrQ6XTk5eUNuknKPRk/BGCLeSv72vczKXwiJpeJX+Q+yQOZ9/FWxTu8VfE2lq42njv8Iq+X/ZW70+/i3oy7AXi2+AV+O/YpYhQxKKQhSIWBGw71hs/nY8eOHUycOBGDwUBbWxs7duwY8A5AWVkZPp+P2bNnB9ROampqsPWhjS+TybjkkksoLy8POGJOmzatT51vAKlUilKpRCaTIZPJkJ6BCdNASExMJDExMaCqsWHDhhGjqtHe3k5VVRWpqanExMTgcDioqqo6WgABmVTgrvvS2b3bwr+X1/PET/ehUEgp2t7Kq4sn9nrNkBB/Rx1ASYnf5kCjGcJvqh90L45GqqlVkCBBhpbzMvk+mdRgbm4u1dXVhIaGAuBwOGhubh6y7eFhJy4OfvIT+PRTuPnmoHXcAHCKTi5a9DZlN49l4pJ9ONetI6p7QXMMVqyEEtrjvnWso4YaTAUmJjRMQKvV4na70ev1dCZ0EtYWRmdnJ9HR0URFRSEIAp2dncyZM2fQv4+ioiLWrV5Lc3MzT0f/jm8mbGTFJf9CIkj4Sfaj3JdxD+9U/p03yv9Kq9vCSyUv82b5W9yVdgcvjn+OKEUkb1f8nWaXiSdznxiw7GJvRERE4PP5kMvlSCQS5HI5BoNhwJKgHR0dpKSkBCrXer2eiIiIgJvo8YSFhaFSqZg9e3bgvm6JuN44tq1Co9Fgs9koLy+nsLCQ2267bUAxD4S6ujpWrFiB2+3G5/NhMpmorKzk6quvHtZET61W09HRgcfjQRRFPB4PHR0dqNVqBEHg4UeyMJmcXHVVPAcOtFNWauW554r54IPpfV5TEODOO+GLL/w29CN9ALN7cRQkSJAgp0y+BUE4nZKbTxTFvi3KhhhRFL8QBKEQuOP4x7Kzs9myZQtRUVEolUqcTifNzc0sXLhwyOMcNkaNgief7Jl4i6JfHSU7G8aPDyblJyFeiEf6zofYY9tRfvgYvpYWrC+9hGfvXsKXL0eQSrFhYwlLyCCDhSxEhw4AG/5Ka7w+nopNFURERKBQKDArzWwbu42wG8KoqKrAetga2JlJSEgY9O+hqKiITz75hPz8fKZMmUJTUxO29VaKI4v5r+ZrUtTJfD/1Vh4a9SB3p/+Q96re57WyN2h2NbO4bAl/q3ybH6R+nwcz7iMsJIxml5k7tv+QFbP+NShVcL1eT1ZWFmVlZdTU1KBWq5k6deqAHSO7HSrLy8vxer0BqcG+THvy8vLYtGlTIJb29naqq6uZObP3odPi4mKysrKorq7G4XCgUqkIDw8f8h21devWUV9fT2hoaGCgvLm5mXXr1vGDH/xgSGM5lpSUFDo7O6mrqws8/1FRUWi12sAxDocXo9HBxx/PYNbMtZQcsfL884dJTVFz/Q1JTJhw4sJHr4chXNsECRIkyKBwOmUkI7AD2HmSf/vOVoCDjdlsZsqUKbhcLqqrq3G5XEyZMqXP3s/zluOT6127YP16eOMNWLdueGI6h4jJmMLEla2obrwRAMeyZageehDxqEHIetbjwMEBDmDkO2OWW7mVu7iLGd4ZhIaG0tnZidFopDKiEnmIHCtWFD4FCxYs4JZbbmHBggVIpVLWDfLPZPXq1aSmpvawsU9NTWX16tX8MvdJbk7+Hkc6Srhu0w2EyjQ8mHkfOxZs4Q9jf0esMhaH18mb5W9R8PUMfnPwd7i8LhZPeBmpIOWlIy+zv/3AGcUXFRWFTqdj0aJF3HjjjSxatAidTheQ0usvWq2WpqYm2traaG9vp62tjaamph7J37Ec20Pd/fycrE2gu61Cp9ORmpqKTqcLtFUMJdu3b6ejo4P6+nqqqqqor6+no6OD7du3D2kcx5Oenk5cXFyg2OF0OomLiyM9PT1wTEqKhp/9LBeX08vv/p9fNvWTj2ux271kZIT2dekT6KOTKEiQIEFGDKfTdlIsiuKEkx0gCMLuQYrnrFNRUYFcLmf69OmB7eHGxsag5FNXl79hUhRh2rThjuacQHS7UVxxBY5PP8XX3Mye7e/ibfqSGTe/wEXSi3DgoIsusskOnBPefXOH4031kpGRgUajodPWSWFbIbv27mLClAk92iNGZY1iR9Hg+mmfzMFREARkgoxsXRZ/n/I3AH60434ey3qEezJ+yPdTb2VZzUcsLl1CnaOedyr/zvtVH3BT8o38eNT/MTl8EgmqeMqt5RzuKOHK+Mv7Hd/ChQv55JNPAIiJiaGpqYl9+/Zxww03DOj7bW9vx263ExEREXDMbGlpGbTkWK1WYzabkcvlgeubzeYhN++qqqpCq9Wi0WgQBAGPxzMiHC4jIyNZv349+fn5PX6eo0ePPuHYoqJWxozRc//9Gbz+ejlvvlnOggUx7Nhp4amnRvfZ2iSKUFgIy5fDww+PPEnCoMNlkCBBujmdynffTXf9O2ZE0NbWhlqtDmzLhoaGolaraWsbMV0zw8O0afD738MDD/ScWvL5YOVKv3V9kB6ov/995GPHorrjDly4CXvnvzi2bWZzy0p06LiBG7iRGxE4MVk43vTFbrVzfdL1xFbE9uhrrlfVszZtLXa9fVBjP10Hx/AQf9fZY1mPkBmaQaFpAx/WfMydabez9ZKN/Hn8i6SoU+gSu3i/+gOmrZ3FJ7WfYXFbsHsdOLwOADabt/RLHaWgoICLLrqI9evXs2TJEtavX89FF11EQUHBgL7f0tJSoqOjMRgMaLVaDAYD0dHRlJaW9np8XV0dK1eupKamho6ODmpqali5cmWfeuthYWGBHuvGxkZMJhM+n2/IpeRaW1vxer0kJSWRnZ1NUlISXq+X1tbWIY3jeMxmM3Pnzg1IbEokEubOndvrjuN992cyf34MV1+TQEFBGB6PyP3370CnlZ1UnKm52T/K4nLB3//uf+kaKQQdLoMECXIsp0y+RVF0AgiCcIMgCNqjHz8lCMK/BEGYeOwx5wI6nS5Q8fL5fLS3t9PS0oJOpxvu0IYftdrfD34smzf7J5p+9SswGns/7wLGtngxuN0oYhJQOERkMXFM1s4NaH/L+thcCgsLQyaTMWnSJObMmcOkSZOQyWSkp6cH9KK76GJD6AbKneU0LWzCzeC5JfbXwTFHl41MIiMjNJ18Qx4+0cdfSl/jfxKvZcv8Dfxl4itkhmbgFb18VPsJM9fOZUnp64zVj8HpdfJG+Vu4vG5aXK2nlYTX1dVhs9m45557+OMf/8g999yDzWYbcLJiNpuJjo4mLS2N1NRU0tLSiI6O7rPdrLCwEIfDQVxcHKNGjSIuLg6Hw0FhYWGvx/t8PnQ6HY2NjZSWltLY2IhOp8M3xBlgt3sigPOo+HW3q+Jw0i2BeOzve1paWp8mRG63j7fequD1NyYTGRlCQ4OLVasa2LSxmaLtvS8koqPhuusgIgJ+8AMY5m+5B0GHyyBBghxLf9ROnhJF8RNBEGYBC4EXgdeBqWclsrNEZmYmXV1dmEymwBZtWloacrl8uEMbmXRXBtVq6MNg5EJG89hjCBIJ0qgoxF/9ktHv7se+/XYkDz+MYv78Ps/Ly8vj1VdfpaSkJDCgl5WVxQ033MDOnTtpaGjAI3jQ2DWExIRwa+KthBASON+GDRHxBDWV0yUuLo7o6Giqqqo4fPgwWq2W8ePHYzKZTnpekjqRJHUiDq8DlVSFUqJkW2sRBeGT+fbi9XxhXMmfj7xKcedh/lX/b5bXf86i+Ct4Iudx1DIVzx1+gTH60dyYdD0+0YdE6D1D2r9/PyqVigMHDgSk/qKjo9m/f/+AtuojIyMpLS2lqakJiUSCz+ejo6OjT5Od4uJiCgoKAqpIoaGhpKWlUVRU1Ovxra2t7Nixg8jISLRaLS6Xi82bNzN58uR+x3omxMbG4nQ62b17Ny6XC4VCgV6v79McaKjoNpk5difgZCYzISESPvxwOm63j2f+mM999+7gm2+aWfyXMn70o777SebPh1mzQHlyifAhx2KxoFQqe/w+Z2RkDJkDapAgQUYW/Um+u8tVVwKvi6L4uSAIvx38kM4ueXl5ASmubic6t9vN1VdfPdyhjUzuvBOmTvW7Yh5bSrJa4dVX/e90U6eeqCd+gSBIJLi3bcO9ezey2Di8jY3Ix407aeINfvv0srIycnJyAjrWJSUlNDU1sWjRokBv6KXSS0lISGBs9Nge529jGxvZSCaZ3MiNfVbY+yI3N5fm5mbmzZvXQxrvdCU3VVIV92feC0CZtQxR9JGgiiddk876eWv4suG/vFTiH7z8wriKL4yruCx2IY9mPcw4Qz67LLt56cjLLJ32Xq/XLysro7OzE6VSiUQioaOjA5PJ1OeA5KnIyMigqKgIQRCQSqWBVoy+2lh8Ph9bt27l0KFDWK1WQkNDGT26737j3bt3o1ar0Wq1yGQyQkJCsNvt7N49dOMwdXV1CIJAdXU1o0ePJiIiAqvVyqFDh4bdzKW/6jHd7NzRyratLfz26bH8+qkD/Ht5PTffnMzKlUauuCIOiaTnz0MQRl7iDeDxeNi2bRvZ2dmkpqbS2dnJtm3biI+PH+7QggQJMgz05x27XhCEN4FLgOcEQVAwQh0yT6bzDf6tWZVKFdAlPhPr7guCXoai2LgRqqv9/2Ji/BKFFyiy0aPR/OhHdE2aRMcvfoHjgw+QJiUh0elQ3XRTr+csX76cmTNnkpycHLgvKiqK5cuXs2jRopNWd0VE9rIXHz5s2Hok3iL+3+Xe+syPZe7cuaxcuZKGhobA34FKpRqQI+NtKbcAcLjjCG9XvssrE15icvhE1lz0JWtN63ip5GV2WnbzVeNqvmpczcXR83gs62FeGv8ioijy4K4f86vRPyde9V0iUl9ff4JueHt7Ox0DnD2IiIggNzc3UMkGiI6OJiIiotfjnU4nO3bsIC8vj4iICFpaWti0aVOfleyGhgamTJkS0CL3+XyIojhkKiPdPcVqtZrMzEykUilmsxmlUhn4fDgZqMnM9BmRTJ8RidHoYPNmM1992cgP79rOwkvjmDYtgsjIky/6jUa//fz11w+veqpEIsHhcLBv376A1KLP5zutdqDgoGaQIOcf/UmebwT+C1x2VNM7HPjpWYnqDBFF8Qvgx709tn//fuLj45FKpTgcDqRSKfHx8cHeu/4SGgrh4RAfD1lZPR/7+GPYuvWC0fySaLVI09NBpUIaH4/odOLevRv5hL5FglpaWk6oesXHx5+2ffr1XM9kJlNAz8ptE028yIu8y7u001PJozsxB38ytGjRIpKTk9HpdCQnJ58y6T8VObpsXpnwEgD37niQClsFc6IvYtWsFXw8fRnTIvwdautM61m08Vru3/kgm8ybuSX5JmKVsRSaNlBo2gBAc3MzVqsVhUJBVFQUCoUCq9VKc3PzgGKTSCTk5eXR0dFBXV0dHR0d5OXl9Zn8VFVVkZOTQ3R0NHK5nOjoaHJycqiqqur1+O7eebfbjcPhCOysdfddn226e4qlUikFBQXEx8cTFhaGWq1mzpw5uFyuIYnjZCQmJnL55Zdzyy23cPnll/frd+355w5z660ppKdrsFq9HDncgSBAcXHfi7GDB+EPf4Cvv4ZvvhmM72DgWCwWFAoFWq2W8PBwtFotCoXilG0nwUHNIEHOT07HZGc6sFUURTvwr+77RVFsAPr2Wh6hlJWV0dbWhkwmQxAEnE4nDQ0NfZptBOmDWbNgxgywWHqWlMxmWLvW//E118AVVwxPfEONKOLesAH1Qw/R+fOf4/7qK8SHH8ZdVERIL60NERERGI3GHpVvo9HYZyX2WAQEko7ejmcve7EdvalQ9XjsXd7Fho0xjOFiLg447p1utbw//Gvmx0gECe9VvU+NrZanxvyCudEXsdm8hT8d+TPfmjcF/k0Nn8Jj2Y+glCj98ng+D9XhtcxQ++3cKyoqUKlUgb7tgeDz+SgvL2fcuHE92mz60g23WCxMnToVl8uF2+1GLpeTkZHR59f3eDxUVlYSFxdHSEgIbrfb37ff7X9+lunWaTcYDAFlE5lMhsPhwGw2D1gffaTw55fHIwgCMTFKrr7qWw4e7OC2W7eSO1rHSy/1vshNSwOdzv8SZR9csaB+0+2weuyC22g09umw2s2xg5pA4P+Bzj4ECRJkZHA6bSe3A0sEQSgBvgK+EkWx8eyGdfaoq6tDKpWSnZ2NSqXC4XBw5MgRrFbrcId27iGR+KUFjqWpyT+cabdDfv7wxDUMSEJDMSxZgtdiwb5kCd66OqzPPos0ObnX5Pu6665jyZIlxMfHo1arsdvtGI1GHnzwwTOKI5ZYxjMeO/YeA5oiIiZMOHFip2cmUkMNy1iGDh3/y/8SQ0zgsQYa8OFDhw4tp99v3T1I+YOU27B5bHR2dXLjlpv5fNa/+Gzmx2xvLeKlI6+wzrSeba3b+d6WW5gUNoFHsx6m2dlMR3wnJdtLCE3REqY20OXuoqSkZMC62T6fD5fLhdfrRRRFvF4vLpfrpGokTU1NpKamBnrE+6p6g7+ybrfbcblcgQq43W4fMpWR7oHGrKwsvvrqKyZOnEhUVBT19fVs2LBhSC3u++JM2icEQcDh8PLoI7t54cXxPPR/u1i71sQ11yTQ2OgkKkqBVNpz8ahWw913+yUHjxdxGmoMBgN2ux2r1RpY/Nnt9lMWfboXVcei1+uDvhRBgpzjnDL5FkXxPgBBEHKAy4G/C4KgB9bjT8Y3iWI/BHyHmW5nte43RYlEgk6no6HhnCvij0zGjIE//QkqKuBYW3RRhA8+gClTTmxTOU8QfT5aZs9Gfd99WJ95BndhIZFbtiB6PAiyE//UWlpaaGpqCvQ2y3o5pr+MO3o7Hh8+JjMZM+YTKuYttOA8epPTU/VnLWspo4w44riXewP3u3GzmtXo0ZNFVo+E/VgEQSBU7u+zXjLxVUIkIbxa8hcmh0/iw+lL2W3Zw59LXuGrxtXstOzmtm13kKcfS1x7DK2treyZcoDYvdGEWjS4na4B62bLZDKmTp1KeXl5QOVo6tSpff7dJyUlceDAAVQqFdHR0ZhMJg4cOEBS0om7DQAqlYrs7GyUSiU+ny9gdGMbotar7oFGp9PJrFmzKC0tZe/evSQlJXH55ZcPe893d/tESkoKqamptLe3s2nTptPq++5GpZKyvWgBMpnAjqJW3nuviscf38Py5fX85jdjmDHzROWakWK0k56ejiiKtLW10djYSGhoKImJiX0O8HbTX5WYIEGCnBuc9ru9KIqHgcPAnwVBUAHzgBuAl4Ch1dM6A9RqdUCzt1v+KS4ubshtoM9rJBLIzOx531dfwbff+qef7r0Xxo8fntjOIoJEQtSOHSCV4li6FG9NDZ3PPIP722+J2rUL4Zgq6NKlSxk/fjxjxowJJGkHDx5k6dKlLFq0aNBjkyLlEi7p9bEIIiiggE46T6hud+I33Tn+/g462MGOwGPHJt+72c0RjhBGGAtYgOToaEl6qN9KfF70XKKVUdTZ69nSspV/TH2XA+0H+XPJK6w0/sdvTT8BlMkK4nfHENqqpjndTGe4lfiKgalDhIWFnWAg1NnZ2WcSM2XKFLZt28aGDRtwu92EhISQmprKlClTej1epVIFhuq6B+mkUikqlarX4web7oHG119/naSkJObMmUNqaioRERH4fL4hVV3pjcFqn5DLJXz5ZQMut49Jk8LYudNCSUkHo7K02GweNJqTv6V1dfk354a6Y6N7cZSent4vtZeBqsQECRJkZHPaybcgCI/1cvce4O3BC+fsk5uby5EjRwIOlzabDavVetoSa0EGiE4HMhmEhZ23lW8AQamk8/e/R3nttdhefRXXihWEr1rVI/EGvzrG6NGjaWlpwWg0olAoSExMZG13v/wQknL01hvXcR3ttKOgp6qEEycqVDhwEEbPBLaOOg5zGDVqLuXSHo+9xmsoDUomMIEYRwyJKv/uyJHOEv407nmeyP4Jfy59lX/VLMcZ4aLikhoaO5pJOZiEbmcoVa5qrtt0PcumLUUpPX1NucjISN555x30ej1yuZympiZ27tzJXXfd1evxer2exMREMjMzA8m00+lEr9f3erxGo4Dj2zYAACAASURBVKG5uZnU1NRAG1FVVRWaY91ihwC1Wh3oJS4vLw/ouQ93pXQw2ycuuyyWiy6KoqHBwcwZa6mvd3LjDZuw2bxs3XbJCfKD3RiN8Le/QWcnPP20vy1lqEhMTCQ9PZ3Vq1fT3NxMVFQUCxcuPOXCY6DnBQkSZGTTn33uyUf/fXH08yuBIuBeQRA+FUXx+cEO7myQm5vLli1b8Hq9yOVyurq6aG9vDybfZ5uZM/3lJql0aN/1hoGQ2bORZmTgXLECb1UV9vfeQ5BI0D79NMJREeJum22FQhGQHnO5XMPuRHg8sUdvx5NIIj/jZ7hwnaAxrkFDFFGo6flzduLEhN/EJ4ss4lXxXJ0QjyiKFLZ/w+GYQyilSn6c8yAbnyhEcqWcpvRm7DoHxdNLUI5Volgn46XRL6GUKvl75T/IN+QxMaxvVZluiouLiYyMDDgM+nw+5HJ5wEzneCQSCTExMWRkZPQY0Ozr53PscGP3wKXD4RiUVqLTobutIy4uju3btzNq1KhAr/rGjRu54YYbhiSOvhjM9glBENBoZPzxmWIefiSLp397kE2bWnjs8WwEAXw+sdcEvLoa6uv9H69Z458HHyrq6uooKipCo9EEdkmKioqIi4s7aSJdV1dHRUUF8+fPD1S+KyoqTnlekCBBRjb9eaePACaKovi4KIqP40/Eo4A5wB1nIbazgtlsZtq0aQiCgNlsRhAEpk2b1qfNdJBBJCXlxP3eL7/0t6R4z5mxgVOimDMHvN6Axrfz44+RREcjdnUFjomKisJkMhEWFkZWVhZhYWGYTKZzTpVCgQIpPfuJL+ZiHuRB7uTOHvd78TKe8SST3KNNRRAE/mfMNXTJu9jTto8tpq3IWmRMqM/nf3ddQ7jPgAA4tU7ar7Fyd9G9vFv5HgmqBKIUUZiczawyfnnSOIuLi4mLi8NqtdLY2IjVaiUuLo7i4uJej5dIJBQUFGC1WikvL8dqtVJQUNBn8u1yuTAYDMhkMrxeLzKZDIPBMGQSf91tHT6fj6lTpxISEkJnZycmk4m5c+cO++tbXl4ee/bsobCwkPXr11NYWMiePXvOyPzn+RfG8fOf5/LLX/kLJy/96Qh3313Ekr+U9Xr8tGkwbhxcdRVceeWAv+yAWLduXUDxJD8/n5SUFDo6Oli3bt1Jzwva0gcJcn7Sn7JMMuA+5vMuIEUURYcgCMMvInualJWV4fP5mDJlClqtls7OTmpqagZs3hHkDGhogC++8Cfe9fXwwx8Od0SDhmvNGiQGA9K0NLyVlXgbG/E1NSHIZAhHh/gAHA4HtbW1SCQS0tLShjTGoTbv0KDhWq7t9bE44hjPeHIScriJm3gr4k02jd3G/5RcTaw2Cr1PS3tDJ5bQNuoc9fxs3y+IUkYyIXMc48LzkTtCgMvZ17afsfoxJ9jWm81m3G43ycnJxMfHByrZff3dh4WFIZPJmDRpUuC+7uepN7q6ukhPT0etVuPxeJDJZAEFm6Ggu62js7OTxMTEgEZ6e3s7Op2OmpqaIYnjZPh8Ptxud6CNJyQk5NQnnYSICAUdHV189WUjCxbEsGZNE/9eXs/jj/du+CUIcP/9w2O2073D0t22pNfrycrKoqio6KTnBdVOggQ5P+lP8v1PYKsgCJ8f/fwqYJkgCBrg0KBHdpbo6OggMjKS5uZmamtrUSqVKJXKYa8MXZC43RAdDY2NcEnvw4DnKpq77/Z/oFTS8cgjOD/6CG9NDaGPPkrItGno9XpiY2Opra3FZrOhVCrJyMigsbGRlStXsnz5clpaWoiIiOC6664b9CHMwVCfGExyjt4Cnyfl0LGyA2uCFbPJgq4rlMSdcYxz5ZH1UA7/qHqfZqeZ1QfW8q1iMw9lPEBHVwd/KH6W1yYuZqPkWzwyD+lCOhOYELCq71b9kEqluN3uE4Ywu8nLy2PlypUBB9zu//v6OYSFhWE0GsnKyiIqKor29naMRuOQ9Vp3t3V4vV4OHTpEamoqOp0OhUJBUVHRsO+o7N+/n4kTJ/Z4PiwWyxnrVet0cv65bDo6nZypU9ZQXW3nB9/fRlSUgn+8P42oqJ6zCsPlcimRSE7YNentvuMJqp0ECXJ+clrJt+DXQ/o78B9gFiAA94miuOPoIbeelegGyMns5SUSCYcPHyY8PDxQGWptbQ1UIoMMISkp8KtfQUmJ/+NjqamBpKTh9YQ+Q1xff41z+XJkGRl4ysuRJiQQMm0aoigSGxtLWVkZo0ePxmAw0NbWxqFDh3C73SxdujTgUmg0Glm6dCnAoCbgI928Y9KkSWzfvp3q8mqSKhL89j9ZEpqntfLR2N/y41H/xzNlf+TTyuU4XA6eP/Qn/lb2Dvem34NcIuMf5UsR5SLfy7iB8eJ4QkNDUSgU1LTWYIo3oXFpCFGH9LCbP57KykrKy8txOByoVCoyTqJbl52dTVtbG/X19YGdjJCQELKze6/CDjbdqhidnZ20tLTQ2tqKzWYjMtIvv3c65k1nk25lqQMHDtDZ2YlWqyUjI+OUDo+nQ2qqhi+/bGD27CgaG2vZt6+dK6+MIyJCftLzurpgxQq/HcHZ1gHPzc2lsrKyxwxBZWXlKWeNgmonQYKcn5xWz7coiiLwb1EUd4qi+Iooii8fk3iPOE5mL9/e3o7b7cZoNFJSUoLRaMTtdgelBocLmQxGj+55X1UVPPMMvPHG8FvTnQEhs2djeOMNNI8/DoDjk0/o+PWvsS1ejF6vR6fTYbPZaGhowGazodPpKCkpoaCggOTkZGQyGcnJyRQUFLB8+fJBjc1isZyg3KHX6wclGRoMfD4foiiSmZlJblYOozJGEWbSM6/1IkRR5Of7fsmTGU+wd+EOHst6BJ1MR6vbwh8PP8+kNdNQiiryE8YiWuHGLbeQlpZGaGgolZ5Kdhh2sDVrK2Ks2KPVp4WWgAHRZ599htFoJD09nYkTJ5Keno7RaOSzzz7rNd7s7Gyio6MDO2lKpZLo6OghS767pQYtFgsWi4WOjg5CQkJwuVwIgjDsr28ej4dt27YRERFBXl4eERERbNu2bdAcQGfNiuSpX4/hlVf8w7erVjXw66cO8swzvW/K+nzw7LOwejW8+y44nYMSRp/MnTsXlUpFQ0MDpaWlNDQ0oFKpmDt37knPO/bnunv3biwWy7DtTgUJEmTw6E/byVZBEApEUTx5k9oIx2Qy4XQ6yc/PJzw8nNbWVvbt24fD4Rju0IJ08/nnflOeffv8orxD3As9WAgKBb6ODrr27UM2ahSe0lK8DQ2EPvEEshUrGDt2LNu2baOtrQ2DwcDUqVMpLCzsYUENEB8fz7fffjuosYWFhVFZWUlbWxtWq5XQ0FAMBsOI2c42Go3ExsYSHR0daPmQy+VYa/1tInen30W0Ipr/Nq5hvGEcOxdu5e2Kd3mz/C0sXW2sKVnLlopt3Jl2O78a/XNqW2v4zcHfMTY1l+zsbKydVuo/rOeSm79rd/qcz6mhhmyy2bBhA7GxsWg0GiQSCTKZDJ1Ox4YNG3j44YdPiDcsLIwdO3ZQU1MT0AVPTk5m4sSJQ/acJSYmolarCQsLIzMzE4VCgcvloqysjPpumY9hQiKRoFAokEqlCIKAVCpFoVAMmrqPVitHq5WzpLiDK6+MY9WqBv785yMsXtz78y+R+AWYPvoI9HpwOEB5+sqV/SYxMZFFixYNaMYiMTExmGwHCXKe0Z/kex5wnyAIVYANf+uJKIriOeUh7nQ6ycnJwWaz0dzcjFqtJicnh8OHDw93aEG6uftueO89vx74OZp4dyPR65FGRqJ59FHaH3gA15df4r7pJsK2bmVvfDyzZ88ODP4eOXKEkJAQSkpKCAkJwel0olQqcbvdg942EBkZySeffEJ+fj5paWk0NTVRWFg47JJ03VgsFmJjY2loaKCrqwu5XI5Wq6WxsdGvUBQxFYAEVTxe0YtaqiZUFkrRgi28V7WU18vewOxuYXHpEt6ueIeLxNlMiZ4Mm0TMRS1IYmVcPOviQA+4iEgjjYDfNMhkMjFq1Cj0ej12nZ39KfsRa0TqP+k9id25cyclJSWkpaUFdL5LSkoIDw8fUmt3u91OZ2cnVVVVgcHP0NDQYXe47FaPqampCTg8dn8+mNz0vWRS0zRcftkG9u5t449/LMbU7OJ730smLa2n5vq8eX7V0ylT/Mn42aahoYFdu3YF9LojIyODSXWQIBco/Um+Lz9rUQwhkZGRCIJAZmYmKpUKh8NBTU1NoDcyyAhAo/HLEhyPyQRaLQyRa+BgIISEoHngAdwHDiDLycFz+DCOd95BrtH0WgnMyspi8+bNTJ06lYSEBOrr69m2bRs333zzoMZlNpuZNWtWwDZdq9Uya9asETN4bLVaaWlpQa/XExISglQqpaWlBavV2uO4PMNYAFrdrTi8DnRyHVPCC7huzjWsavgPfyl9nSZXE1+xGplBSv7EPJJsCUgEKTa7ja/r13KpeCkIcCM30kADCSQglUqpq6ujsrKSpqQmmrXNSPVStPKeTp/FFCNDxqbdm0hNSiU6Ohq5XE5oaCgej4etW7cO2XMG0NTUhMfjISkpCaVSidPppLa2dsj0xvuiv+oxA2VyQTitrW5ycrRUVVmprrbz2ad13Hxz8gnHCoJffnAoKCoqCix2p0yZQlNTE5988glArzrzQYIEOb/pz3q/BpgN3C6KYjUgwjFivecI3fbQJpOJqqoqTCZTj/uDjBAEoeewpdMJixfDH/7gH8Y8hxC9Xjoeegj1UQUU1zff0JmTw7S0tBN0pMPDw7nyyiupra1l9erV1NbWcuWVVxITM7h/ahaLhVGjRjF79myuuOIKZs+ezahRo0ZMz7fX66W8vByAuLg4AMrLy/H2oQcfHhLOw1kPAVDY/A2t7lZuTbmFz2d9yrP5f0DjUuOReNkVtodVCV/RENlIib2UjWxGRKTZaSZdTGc2s0knHa1WS1VVFTqdjvS4dCKtkXTWdxLm65ksrmUtH/ABDdMbiImJwWazYTKZsNlsxMTEnLBYONuYzWbUajVxcXEkJCQQFxeHWq0e9kVVXl4e1dXVWCwWfD4fFouF6urqM9L57guDQc7//G8i7/7d/5q+d28bb71VzvvvV53y3MpKf8fbYLN69WqkUikrV67k1VdfZeXKlUilUlavXj34XyxIkCAjnv6UQ14DfMDFwO+ATuAz4Jxats+dOxer1dpDQkyr1Z5y8CXIMLNhg7/yDXDwICSfWMkaqQhSKZHr1yP6fNjffhtPcTGjVq5EYzIR/umngUVGd2KyYMECLr30O1t2n8/H7t27BzWmkS5hJpVKGTduHCaTicrKSjQaDePGjaO2tvaU5/4s5ycAbDJvZnn957w47jk2v7qRlmQLh1KOYJFa2KrYjjBWIKUhiWpbDS+VvMz/JF7H3KiLAL9jZWJiIh6PB98+H+mSdGIdsbhl31kduHDRQgsAEqOEaks1BoPBb+ClNVOWXUabp40OOtChOwvP0okoFAoSExN7tOskJibS0tIyJF+/L4bSJl0iEbjuukQ2bmzmqqvj+WKFkeefO8INNyZx660pvbpfut3w2WdQWAi33QazZw9uTEVFRVitVtRqNVKpFLvdTlFR0UnVdoIECXL+0p/ke6ooihMFQdgNIIqiRRCEM3NJGAYSExOZNGnSkLwJBBlEFizwl6TKyuCyy4Y7mgHRdvfdKC67DE9xMWGHDrHzpz8luq2th4RYbm7ukCTFI13CLDIyEplM1kONxG6396s9bGbkDGZGzsAretkwdTMP2u5lctlE9ikOsCd+H5aQNqoSapix9iKuS7iGBGU8a5q+5j8NX+FwOFCr1VgslkDvtEajod3xnWqIAgVP8ARGjHxU/hHN3mbCwsIIDQ2lIboBi9SCO8+N7LiX2VpqCSccDZrjQz5j4uLiCA0NJS4uLjD42dnZGdg9GC6GwyY9MlLBA/dn4rB7+frrJtZ+3cQ335hIStKQmdkz6fV6Ye9e/8crVvjbUeQnVyrsF1VVVURERGAwGJDL5XR1dWGz2aiqqhq8LxIkSJBzhv4k312CIEjxt5sgCEIU/kr4OcVwvAkEGQQEAS69FBYu7NmOIornjBa49pe/RJKcjHvNGjhwgEm7dtHx8cfsu+cedAkJgcR3KJLioaxEDoRRo0Zx4MABIiIikMlkeDweWlpaGDt2bL+vJRWk/NLzM0orS9kRt4sQdwjX7b6KqsgaDqYW0yQ18Vn9cv5V/2+uir+Su9Lu4NGOR6i8ooZLauZhUBiw2+2Ul5fT1tbW49oqVGSQgdqhJjw2HKfTicPhQNAIRIRE0GZrQ406cLyIyD/5Jw4czGAGC1l4xs/VsVx33XUBnfiEhASMRiP79+8f0qHP3hgOXfmcHB05OTr27LVw6FA7RqOTe+7ewf/7/dgTkm+Vyl/x/u9/4fbbBzfxBgJa8R6PJyCv2D1zFCRIkAuP/iTfrwLLgWhBEP4AXA/86qxEdRYZ6eYiQU7B8Yn3hx/63zmvuWbEJ+GyjAxcGzagWLSIrgMHYO1aLLffjvcYjbNuXd/9+/dTUVFBWFjYWdH1HemLUL1eT3R0NGFhYUgkEnw+H1Kp9ARt8tMlwhDBR7s+IiIqDKlSSrmvgj2x+3lR9iySyTJeOvIyBzsOscK4khXGlaiuVRJTHYW7w83+xAPIumT4fD58vt7rDTKZjNFH9eo9Hg8pYgr5Dfl8s+EbeOq740yYcOBPuCLoqWDTSCOttJJJJiEMbFOx24hp+fLlfPvtt0RERHDbbbcNukNqfxlOm/QwQwiLF0/kppu2UFNjZ8M3zeTlGRg7tufv0tixMGbM2XkZ8Xq9qFQqYmNjAxKQXV1dfc4wBAkS5PzmtJNvURQ/EARhJzAfv8zgtaIoFp+1yM4Sw/kmEGSQ+e9//U2aAAoFXD7yBXlEqxXZmDF4s7Jw79tH5JEjRKWk0BoT08Pe/WwnwCN9ESqTyZgwYQJFRUUBHfSCggKcA3RD2bBhA2FhYXicHuwdduQKOblHRrGpbhMx2XH8ZeIr1DnqeOnIK+xu24Mj20lVdi1ttR0Y6nXom3XI5TJsmb1XKnU6HUajkfDwcARBwOPx0Nrail7XM8GLIII7uINKKsmgp2NmEUXsZCdKlPyEn5zQrnK6LFq0aNiT7eMZzhmDu36Yjs3m4XvfS2bp0mrefruSzZvNrF03j8jIobGfVygUaDQatFotISEhhISEoDmqeBQkSJALj369uouieBg4pwWxR/qgWZB+MGkSfPutvwI+ffpwR3NaKK+4AtHno3rtWhIPHkS+eTMevZ7wlBTElJQhS35H+iLU5/NRXV3N9OnTA3bc5eXlREVFDeh6Bw8eJCMjo4e9d3l5OQcPHuRSw2UkqOKRS+Tcm34PBoWB7394O10pHtqS2mlLaie2NQbDIR12jz/5LreWk65JRziarRkMBmpqahBFMdBOUFtbS2xsbI84ZMhIPXo7FhGRSioBSCKpR+LtwcMe9pBNNlp6Sh32Rl1d3YDMXM4mwz1j0NXlIy5Oyc03J7NsWQ2VlTZqaux4vSIxMb276+zfDzt2wB13nHlSnpaWhsfjwWw2I5VK8Xq9eDyeHjMNQYIEuXA4ZfItCMIuURRPatN2OseMFIb7TSDIIBIVBT/9KXR1gcEw3NGcNq6VKwnZsgVx9GgoLgabDV9aGnqXi4ohkvob6YtQn8+Hy+XC6/UiiiJerxeXy9Vn28ep8Hq9REdHo9X6k1etVkt0dDQlJSXMj7kYgAZnIzKJlIuj56LerCT6QBTtM6yYwpppDG+icVYTIVUyCk0bWFL6Oi+Of44YZTQKiYKGhgY8Hk/A2t3r9dLV1UVDQ8NpxScgcD/3U0EFSnomg5VUspKVrGIVt3IrmWT2eZ26ujree+896uvrAyZNu3bt4vbbbx/WBHyo2qn6wmAI4Q/P5HPoYDvbt7dSXm7l2mu+Ze68GP7xj6knHL95s9/nC/w+X2cqhnXppZdSWFh4Qo/3sapGQYIEuXA4ncp3riAI+07yuAAMrBFzGBjuN4Egg0xvSff+/RAZCcOs8NAXikWLaJbJkFZWEvX008g2bICnn8aanEzYxRcPSQwjfRHabee+bNky2tvb0ev1zJ07d8BmMUlJSVgsFrRabaDybbFYSEpKChyTq8shV5dDl68LT7aX+NJ4tF93YNBqMeWZaUvowJ3q4cYtNzMpbCKl1lJWGf+D0+fEYrEQHh6O0WjE5/MhkUjQ6XS0traedoxy5GSTfcL9Ffh3IyRISCKpx2NllBFFFPqjL8GffvopW7ZsQS6XB+RUa2pq0Gg0PPLIIwN56gaNkWCTXlpm5a4fpvHcs8U0Nrpob3djs3lQq6WBXQyAiRNh5Uqw2fwumGdKt278sWonbW1tgcXgyRiJOxlBggQ5MwTxFI4CgiCknMZ1vKIo1g1OSIODIAhaoKOjo+O0XuCCnCdUVsKf/uSXK/jxj0esPX3d9u2YH30ULaAoLcU+cSK777iDmbNmDdkb60h+U3/55ZfZv38/EyZMIDIyErPZzO7du8nLyxtQErl06VIOHz6Mz+fD6/UilUqRSCTk5OT0qgQyfvx4kpOT8czxoZVqia+JZadjF5VpNbiyv9P6HqfP54HM+3lg4f2E3KtkUellREZE0tLSwq5du6iurqa+vndL+tNFRKSeepppZgITAvd78PACL+DCxWxmM5/5zJ8/H41GQ1ZWVmCRUVJSgs1mY+3atWcUx/nE888V86tfHQAgN1fLa69NZuasnjKW1dV+Q93w8DP/eldffTVtbW1oNN/JS9psNgwGAytWrOjzvLq6OjZt2kRKSsoJi+SR8rcaJEgQP52dneh0OgCdKIqdJzv2lGWko26W5xUjOekIcoaUl/vbUDweqK0dscl3wuTJ8NhjVJSVkfTssyiKiph56aUYPv0UhqhCORIqkX3R2NhIYmIier0eiUSCXq8nMTGRxsbGAV2vN3MtURT7NNfSarUIgkDYLn9FuSq0ivpJDaS8n8DiexbzaulrrGr4D3vb93HvzvuRPCSQ0pyETqdjZ9RukmQJjBo1iqampoE+BQEEBBKP3o6lkkpcuACIOWo23NjYyIIFC1DHq5EjJ0IZQXp6OmvWrDnjOM4XRFGkvNzGXT9M4523Kzl8uBOny4vPJ/Yw4Ek5nbLTaVJZWUlOTg5RUVGBnu/m5mYOHz75CNVIH4wOEiTIwOiPvfw5gyAIV+GXRjyB7kpCWFgYEyZMICwsjE2bNlFXN6IK90EGyiWXwA9+4K96X3TRcEfTJ4JEQsK11zI5NRXd7NkoFArUGzciLzinDGPPGk6nk/z8fBwOB42NjTgcDvLz8wesdtJtrmU2mzl8+DBms5lJkyb1mcBkZWVhMBjQ6XQYDAZiJbHM3DSN7Kxs/lD8HI9kPcQ389ZyXcI1CAj44kUOjyvlo9H/wuxqwdpoxWVwo5jY+zDfYJBJJj/iR8xkJllkAf7Esquri72Re/lyzJdsTtyMu8vNqXY4LyQEQeDNv05m8eIJTJ4chijCLTdvYeaMtfh8fT9PnZ3fmez2F6/Xi0ajISYmhoSEBGJiYtBoNKeUGrRYLCfIa+r1eixDNBsSJEiQs8N5mXyLovgF8OPeHju2kiCRSAgLCyPlqMpEkPOEmTPhqObySKa+vp6y99+nKCcHl8uFY+NGBKkU9+bNwx3asBMVFUVZWRllZWUcOXIk8PFA1U6O1TW/9957mT9/PhUVFX0uuufNm0doaCjNzc3U1NTQ3NyMNlTLvHnzeLfgLfL0YyntLCVNk8qmiwsJ3a8BH1i1Vioyq9g0azvlURUQ5q+k7mzdNegJsIBAPPEsYEFAFzwkJISy6jKaw5uRyqX4PD4qKyoJCfE/3kUXduyDGse5Sn29E4MhhLg4BRZLF11dPrq6eh/o3b0bfvtbeP11/8Zaf9Hr9SiVSiQSCYIgIJFIUCqVp9St7x6MPpaRNBgdJEiQgXFeJt8nI1hJuABxufxDmCOIuro6VqxcybpLLuFIeDhN8fE4XS6af/tbbK+9dsFXKhMSEli3bh1KpZL8/HyUSiXr1q0jISFhQNfr76I7Ozsbm82GXq8nKioKvV6PzWYjOzsbrVyLRJCwIPYSbkm5mVRNKoIUUt9PJK0uBcEnYFVbqc6ro21mJ2+Vv8Nzh1/E6XPS3tV+Vn+2MTExmIwmHG87MP3HhPE/RpqamoiJ8belHOEIL/AC7/Iu7bSf4mrnN6mpGv7z5UW8884UpFLYt6+dyy/bwLvvVJ5wbF0dWK1gNMLOnf3/WmPGjKG1tZVdu3axadMmdu3aRWtrK2PGjDnpeXl5eVRXV2OxWPD5fFgsFqqrq8nLy+t/EEGCBBkxDCj5FgThScFPiCAIzw52UGeTYCXhAsNshueeg9deg1P0Vw4l69ato6Ojg5SUFC5bvhz3rFmIPh/ubdvQPPooDFBS73yhvr6eefPm0dnZSVFREZ2dncybN2/Aw4v9XXQXFxeTlJTEmDFjyM/PZ8yYMSQlJVFc/J2vmEqqIlntVx+JLA9nfOQ4OCgS/0U0kQfCkXgleAwefnngKUo6S/igehm/O/AH/l2/AlEUz1oSLpfJiXXGkl2aTaw1todCzBGOICLSSCOh9LRYN2HCx4X3e7d/fwdXXeVf1G3caMbpOrEV5Mor/Q6Yd98N06b1/2skJibS3t5OTEwMWVlZxMTE0N7efsq+7W51LovFwu7du7FYLMFhyyBBzgMGptsF24EPAR/w/OCFc/YZ6RJrQQYZm83fqOnz+cV7c3KGOyLAn9ylpaVRWlrKgfnzURgMXDxqFLqSEjqffRbvoUNEbt6MZIB26uc6zc3NXHnllUil0sB9Xq+XVatWDeh6/dU1Ly4uJudoO5DT6UStVhMREdEj+e5GJpER3xKHKlnFmOTRKN1KwroM7CzbQ4O3AcvYdozOBn6x/ymiFdGkh6axoXkjS6s/4K2CNwb0/fRFUWKlUQAAIABJREFUt3xidHR0YLBPrVZTW1sLQAEFgaRbynfPrQsXb/ImSpQsZCHjGDeocY1kfvzwKB5+ZBQ33riZz/9t5GdP7GX9ehN//etkDAZ/u45EAv/3fwM323E4HOTm5mIwGPD5fISGhqJUKk/Q/e6NkTwYHSRIkIEx0LaTMYAJ8ACxpzh2RBGsJFxgpKT4BzDnz/db1Y0QbDYbVVVVREREkDVuHHklJVQYDP6BuU2b0L300gWbeIO/5/t4pZCmpqYB93z3d/vebrdTXl5OQ0MDZrOZhoYGysvLsdt775fOz89n3759dO1x46ns4nD9EepaarnWeRXvTnmLe9PvQS1VY3KZePrQ77l35wMkq5PocHfwyO7HaXIOcJLvOGw2G1qtFoPBQFRUFAaDAa1Wi81mAyCZZC49ejuWMsrw4sWGDQ2aHo810xxQVTkf6VY4MdY7ycgMxen0sXVrCx5Pz52J3hLv0928cLlcjB49GrvdTktLC3a7ndGjR+Nynb/Pa5AgQfpmoJXvWlEU/z975x0fRZ3+8ffsbE3vISGNBEJJoQZEelWUA1HUO/DnKZ4NPeshnuXUu+PUO/Xs593ZBVHRAwFFKdIRCNISILT0nmzabnazdX5/DNkkkFCTEGDevPJi+M7sd76zIZNnn3mez+ctQRAeA3oBq9pxTR2Okkm4whg6VP7qQnh5eaHRaNBqtQiCgC0mhkKdjrDiYvxra7F88AHO/fsxzJ6NGBl5sZfb6UyePJkPP/wQf39/jylJbW0tc+bMOa/5oqKiiI+PZ/Xq1VRUVBAaGsrkyZPbvA84HA5ycnKIiopCo9HQ0NBAYWFhm54BoijicDjIzs72SBkGCH6Ik0WWFS3nsd6PcFf8nXyc8ymf5S2iyl7FW8fe5bO8RUwIH49GULOpYjMaQcPwkPOoaziBzWZDr9fjcrmoq6tDFEX0ev0Zg7we9GA60znKUeKIa7FvNaspppjRjGYoQxG4QK/1LoggCGzYOI7jx80Mv2otpSUNzJ69ndmzYrj9t6fKlVZXw5dfwoABZ1eGotPp2Lt3LyqVCpfLhcViYe/evYoHhYLCFcp5Zb4lSVp2YvMRSZJalfRTUOjSZGWdfdqqA4iOjiYgIICqqipKSkrI8/dHGxlJzTDZ6tq+ZQuSzXZR13gxiYiIoMcJjfbGR/M9evQg4jxdS89V7cRisWC1WjGZTFgsFkwmE1artc3M9969e0lISGDo0KFcffXVDB06lISEBPbu3ctbg16nh3cce6r3IiGxe/IOHkt8mABNADWOWr4pXEra2qv5PO8L6hx1ON1OfirfcF414YIgkJubi9lsRqVSYTabyc3NbeHe2BpeeDGQgdzCLaib5WRs2Mgmm3rqKaDgsgy8G9FoVLjdEB0jW1qu/6mctetO1WmXJHjtNVkB5euv5cq2M+F0OsnKykIURcLDwxFFkaysLJxOZ3tfhoKCwiXA+Wa+G7l878QKlyduN3z1FaxfDzfdBJMnX5RlxMfHI0kSNTU1mM1mfHx8iDaZ8HK50I0di23DBhx794JWi6uiAvE8yy0uVTIyMhg9enSLmuzq6urzNhc5V7MSs9mMwWAgNzcXm82GTqcjMDAQs9nc6vwVFRUkJCTQvXt31Go1TqcTtVpNdna255gZUdO5ofs0LC4r/yv6lq3jN/B5/he8d/w/GO1V/K9oGT+UrmZm1I1Y3VbGh42l2FpMhD7ijMFzI+Hh4RiNRqxWqycDb7FYPGon54oWLTdyIxvYwHjGt9jXQAM6dJdVQN6vnx/btk3kheczeeONo3z1ZQGJvXy5f25PgoN1gFx+Mm0avP++rGh6Np+R8vLyiIiI4PDhw57/TxEREeTlXXYedgoKCmfBhQbfV2ZaTuHSpb4e9u6Vt1etkjXBvb1P/5oOoLHxNz4+vqnxVxQZcccdeJWWYtuwAfu2bdTNn4/+mmsw3Hprp6/xYlJdXU1cXFyLMX9//xbB7LnOp9fryczMxGQy4evrS0JCQptqJzU1NUiSxMCBA/Hz86Ouro6DBw+eopTUiFqtxuVy4Xa7kSTJY2PfXGkE5My0t9qL9WPX4K32otxWwYspCyhpKOGdY+9Rbivn07yFGEQ9gZoADtVl8XzSn+jr1wdREM8YhCcnJ7N//36CgoLQ6XTYbDYcDgfJycnn9b4JCCSRRD/6tQiyJSS+5EucOJnIRGJpRzvIi4yPjxpfXw3x8d5kZ9fz2muHGT06jNFjmj4ADxkCYWFn74JZWFhIbGwsSUlJ6PV6TxmTYu6moHBlcsbgWxAEE60H2QJgaPcVKSh0JL6+smzBsmUwa9ZFCbyhqfE3IyOD7OxsAgMDGTFiBN1sNqofegjtuHHY169Hqq5Gf8stF2WNF5NzVSc5E06nkx07dtC7d2/i4uIwmUzs2LGDyDbq6Z1OJ97e3tTW1noCbm9vb4xGY6vH9+jRg7y8PIqLi1GpVLjdbhwOh6d05mS81XJpwx96P4ooiJQ2lHHUdIwk/368dfQdihtK+E/2B2hVWj7LW0SMVzRV9mr+lPT0aa9Tq9WSmJhIRUUF9fX1aDQaEhMTPSY758vJ2e1ssslB1sM+xKHLKvgGePiRRH57RxwjR6yjrMzG00/v5/kXkpkwQX6CIAjnZj9vtVpRq9X4+fmh0+nQarWo1eqzUjtRUFC4/Dhj8C1JktIRonB5ERUlB+BdEDE+nqClS3GXlGBcvx77jh2YX34Zd0UF/q++erGX12m0tySoSqVCp9MhinL2WBRFdDodKlXrbS9arZaGhoYWmXGbzdZmEOvv78+BAweIi4tDp9NhsVgoLCwkJibmtOsK1MofJlSCyOzY3zA4aBBGmxG9qOfTvIXkWwr4OPdT1IKaGd2nk1lzgAWHXuKTYXJgfjJFRUV069aNgQMH4u3tTX19PUeOHDlvffS2iCSSkYxkD3sYxagW+1y4WsgYXor4+2vw8VETGqqjosLGjh1VPPLwHvbtv8ajjtIctxs2boRRo0Ddym9Vg8GA2+2mtLTUIwHpdrsxGJT8lYLClcgV53CpoNAqndzYWFhYyNatWwkMDGTgwIEEBgaydetWioqKUAUGYv3mG7QTJgBg27gR73nzOnV9F5tGdZJ169bx73//m3Xr1hEfH3/eKkUqlYq0tDTMZjPHjx/HbDaTlpbWZvCtUqlwOp0YDAa8vLwwGAw4nc42j8/NzSUoKIiSkhKysrIoKSkhKCiI3Nzcs1qfj9qbwUGDAIj2iubuhLv47+D3eLDnXHp4x+GUnCwp/IZJm6YAEvn1+SzM+5yM2swW8zSWvRQVFXH48GGKioo8ZTDtiQEDE5nIozzaQprQjZv3eZ9lLKOCinY9Z2cjigLf/G8kL76UCsDhwyY++iiHioqWyjFWK7z1FnzxBXz+eeu3kuDgYERRxG63YzabsdvtiKJIcHBwZ1yKgoJCF+NCa74vSQoLC8nIyKC6uprAwEBSUlIU6cErmd274fvv4bHHwMurU055ugbA7tdei9itG/qpU6latw7nvn04tm/HXleH1+23d8r6LjbN1UkaM9/Z2dlERESc189qYGAgarWawYMHe8Yaf/5bw2KxIIoiWq3Wk0G22Wxtqp3k5+cTGhpKjx49PNKIZWVl5Ofnn/NafxMr1/db3VYGBQ7kj32e4MWsl/mxdA1HzcdYV76en37awNCgNCINkZQ1lHOg7iDjw8ai1+spKyvDbrd7Gj8b6907AvVJv0IyyaTkxJ8IIgjl0m4U7tHDm/HjwoiONlBQYOWh3++mrMzGU0/19Ryj0UCjkmNODjQ0wMkJ7bi4OKqqqggPD8dgMGC1WsnJyTmlr0FBQeHK4IrLfLeVcVQaX65QsrLg3/+GggI5bdVJnM7ufNeuXbxeU8Pf/vUvDoeH43A4qH/3XZxXkDJCRkYGBoOBzMxMfvjhBzIzMzEYDGRkZJzXfOdqstPQ0EBYWBh5eXns3r2bvLw8wsLCaGhoaPV4i8VCSEgI8fHx9OzZk/j4eEJCQtoM1s+Gq0OGMzXyOixuC8XWEjaMW8tLqQvo69sHCYkdVTv59c+zmfvLg6wvWw9Alb4KtUaNt7c3er0eb29vj055ZxBGGH3p65EubE4FFZekfX1Ssj+LvxhOYm9fHA6JxYvzyMlpUr1Rq+G++2D0aHjyyVMDb4A+ffoQExNDdXU1ubm5VFdXExMTQ58u4riroKDQuVxxme9zlRxTuMzp3RtSUuD4cdkxo5Noq6HQaDSyd+9eUlNTGbx6NfmjRmH98EPYswffJ5/EVV6OGBbWaeu8WBw7dgy3201MTIynQTInJ6fNso8z0VaDa1s/8263m8rKSlJTUwkICKCmpob9+/e3Wb7h6+uLVqulurra03Cp1WrbxUTFX+PPe0PeASCnPpcn+vwBgNeOvE5GbSabK7eyuXIrx+tzODziGCN2DschONAKWiS3hMFgwGQyXfA6zoZudONWbsWGDS1NNekOHHzER+jRM4lJ9KXvaWbpWqjVKoYODeZXUyN5K+coh7NMDE1by8FD1xIaKj9R8POD2bPbnqNnz57ExsZSXl7uUdsJCwtDo9F00lUoKCh0Ja644Lu9JcwULnEEAX77W3A64TyVNM6HthoKCwoKSE1NJTIykpLnnkMD1O3fj2r3bkwvvYS7sJCQnTtR+fh02lovBnV1dcTGxnqeDvj7+xMcHHxBusjn4mwbFRWFVqvFZDJRX1/vaY5r6/VhYWG4XC5PXXij1GBYO39Q+kvy8wDsrEonXBfGU1d9xquHX2dX9S+sLVsHobBvWCYGu47gmmB6FSeg1+s7rOykLXToWvx7H/uwnPjjwtWpa2kvbvu/WHr08ObBB3dTW+vg80X53HtfAnp9682lRiMEBcm3mJSUFJYvX47dbkeSJE/d97Rp0zr5KhQUFLoCV1zw3d4SZgqXARfB4rmtTOzPP/9MdXU1mzZtwmQyce3x40SEh+PnduPMzMT/ww8v+8AbICAgAIvFgtls9tRcWywWAgICOuX8w4YNIzMzk4KCAtxuNyqVCi8vLwYOHNjq8SEhIVRWVuLv7+9Zr9FoJCQkpEPWNzQojY+Gvo9WpeXvh17lX4Pe5rO8RWwz/kx5iNzoWK+3onKryAvKZ9yB0R2yjrMllVTcuDnEIfrRr8W+TDKJJJIggi7S6s6OpCR/EhN9effdYxw8WMf8+ftYu7aUFStbvrcOh2wh8OOPcMcdkJYmj5vNZqqqqjwGTEFBZ3e96enprF69moqKCkJDQ5k8eTJpjZMqKChcklxxwXd7S5gpXIZYLFBZCWeQibtQWsvE2mw2Nm/ezKBBgwgKCqIuNpY1R45wa0wMaTU1WP75TxqWLMF3/nzUiYkdur6LSXMH0NLSUnx8fIiKijprp8cLxcfHx6P13YjD4cCnjQ8+KpUKtVpNeXm5Z0ytVp93mczZoBPl7PKnV31IuD6cBncDlkP15LsLqOpWTWWQkcogI75VPlgTGvhz5gLuiL+dGK/oDltTW2jRMvTEn+bUU88yluHCxVjGMoYxnb62c0GjUfHsn/rx+j+PsGNHFXv31lBSYiUioqnQ2+GATZvkh2lffw0DB8KGDRuorKz0NO7qdDrcbjcbNmzgtttua/N86enpLFmyhNTUVIYOHUpZWRlLliwBUAJwBYVLmCuu4bIx41hdXc2ePXuorq4+be2nwhXGpk3w9NNyE6bT2emnF0WRkJAQDAaDXL4QEUG8VktpeDgIAo6MDDSpqYjRnR9AdSYpKSmYTCbi4+MZNWoU8fHxmEymNhsk25v09HSMRiOiKKLX6xFFEaPRSHp6eqvHNzQ00Lt3b3x8fBAEAR8fH3r37t0pjY7hetn4ZXK3SQyoTuE+9930rk+kh1l2gTEFmVkRv4qVJd+xr3o/e6v3sa3y5w5f19lwjGM4cSIhEc2l8X/6ppui+euCFLy9RcrKbAwZvJqtW5pkFb28YOZM+bP7/ffLDZnr16+noKAAjUZDUFAQGo2GgoIC1q9ff9pzrV692lOGJooikZGRpKamsnr16o6+TAUFhQ7kigu+QQ7Ap0yZwqxZs5gyZYoSeCs04XY3Zb737On006vVaoYNG0ZtbS3Hjh2jtraWgX36IOl06E/UhzasWIF93z6cx493+vo6i4v9ITkrKwtvb28EQcDlcsm28N7eZGVltXq8Xq/n2LFjnrpwg8HAsWPHOrXWOlQXQqx3LKa6OuLKY7jm8ESuKk4jxiwHtbmWPO7adQ/37LqftWU/4XK72G7cgdTJGvfN6U9/7ud+JjKReOJb7CugoMuqo/Tt68cjj/ZGpYKKCjvLl7c0MRo2DP74R2hsLzp+/DgGgwEfHx/0ej0+Pj4YDAaOn+FnuKKigvDw8BZj4eHhVFRc2hrqCgpXOldc2YmCwmkZORIOHJCt6jopy9qc0NBQRFFk5MiRnrHi4mIqNBq8Jk6kYflynAcPYl20CMMNN6BOSOj0NXYW59Ig2d5YrVYiIiIQBAGbzeZpWmyrMdtgMFBbW4vD4fC4FzaOdya+vr6UlpYyUNMfVZCKIHUQsTkxXN/jWvbFZvKzcTu5ljzePvYuq0p/wEfty3ejlmGymwnSBnZaWU9zwk/8aU4llXzER4QQwjSmEUXXSpCEhel57rkkjh8z88UX+fzzn0f5+ecqNmwch0olIAhyo2UjNpsNq9VKbm6up4fA5XJhs9naPgny/aCsrIzIyEjPWFlZGaGhl7Z+uoLClc4VmflWUGgTtRoeeABSU1v+9uwACgsLWbVqFZ9//jmrVq2isLCQyZMns3//foqLi3G5XBQXF7N//36uS0ykbt489DNmAOA8eBDN2LG4L0BHWqFttFotxcXF+Pn50bNnT/z8/CguLm7TXl4URbp160Z9fb2ntrdbt26IYufarKtUKk+ZjCAIDLT0p5sQjkEwMCZ0FJvHr2dS+ARUqDhuzmZfzT5G/zSeWdv/jw3lG5Ek6aJmwhvZxjbcuKmg4hQjn67E9OmRjBkjB8L799dw9Ki51ePM5giOHu2FVqvFz88PrVZLTU0NzjOUtrV1P5g8eXK7X4uCgkLn0WXvaoIg3ABcD4QB70iStFoQhH7A84ARWCdJ0tcXcYkKCudNo9lTbGwscXFx1NbWsnXrVkaMGMHNN9/M6tWr2bVrF6Ghodx8880MTEtDuvFGXHl5NCxbhvPQIUzz5oHLhf8bb1zsy7nsiI6ORqVSUVhYSEFBAYIgoFariW6j1r6+vh6Hw0F0dLTHwbCwsLDTdZxra2txu90UFhZit9s9wV5AtQ8P9H4At+TG7nawcuQyPsz9mGVFy8muzwFg3v4/Mi50DBISrwx4uVPXfTJTmEIQQZgx041uLfbZsJ0iZXixuGlmNGPHhdE/9UfKy21ce81G/v73VG6+palZe/t2KCn5Dd7evpjNe+jevRxRFNFoNGcMvhubKk++HyjNlgoKlzadGnwLgvAhMBUolyQpudn4tcAbgAi8L0nSS5IkLQOWCYIQCLwCrAamAG9JkrRZEITlgBJ8K3QslZWQng5TprTrtKcze5oyZUrrv1wdDur+8Af006bRsGwZ9l27CF6zpl3X1ZUoLCwkIyPDYwOfkpLSaWUoQUFBlJeXEx4ejo+PD2azmdra2jZ1uy0WC35+fjidTurq6hAEAYPBQF1dXaest5GCggJ0Oh2pqanodDpsNhvHjh2joKAAAJWgYsnViwHYUZ1ON104JpeZxflfkm/J55O8zwjXh5N4vBc/G7fz1sDX8dF0vrSlBg0jGXnKeCGFfMZnjGIUV3FVl8iK+/lpuHZKBF99mU9RkZVFi/KYeXO0p4SnZ0+ABgTBC6PRgkpV4nnCcKbgG+Qyk+zsbIxGIyaTibKyso69IAUFhQ6ns+9cHwNvA582DgiCIALvAJOAQiBdEITlkiQdPHHIMyf2A3wGPCcIwjQguLMWrXCFsm8f/Oc/supJ9+5yKUo7cT5mT4Jej/dDD6GKiqJhxQpcx45h+egj3IWF+P31r+22tq7A6Z4MdEYAXlZWRnx8PCqVCpPJhE6no0ePHm1+f2w2G3V1dRgMBvR6PQ0NDdTV1Z2xpre9sVgsqFQqT9bbbrfjcDhatbl/oOd9uCQXFQ0VbKv8mdGho1iUt5iyhjKeyXyOQE0AC/M/J1QbSoJPPAMC+3fqtZyMhMQP/IANG+tZTxJJBHLx/Rk0GhXvv5/G4MGBPPzQHr7/vpQbZ2xl8RfD0etFQkLAz+8rEhMjiI6WEMUAXC4XDofjjMH3ypUrWbhwIWlpaURGRlJcXMzChQsBmDp1amdcnoKCQgfQqTXfkiRtAqpOGh4KHJMkKVuSJDvwBTBdkHkZWCVJ0u4Try+XJOkB4EmgsjPXrnAF0qMHNJYN5OS069SNZk/NORuzJ93YsbiystBPnw6A9bPP0LRh/HIp0/zJgEqlIjAwkNjYWDIyMjrl/E6nE5fLhUajwc/PD41G43GwbA2bzYYoimRnZ3uMk0RR7PTg29vbm7i4OIxGIwcPHsRoNBIXF9dCr7w5oiDSzdCNFaOW8mLqX7k+cgozut+Al2ig2lHDnzJf4In9f+Trwm8obShjY/mmTr2e5ggIjGMcYYQxnOFdIvBuTtqQIIYMkde0alUJ27Y2/Yry8ytAoynB4XC0+NLpTl8+s3TpUtLS0oiJiUGtVhMTE0NaWhpLly7t0GtRUFDoWC7+MzvoDhQ0+3chMAz4PTAR8BcEoackSe8JghAHPAV4A/9obTJBEO4B7kFpJlW4UPz84P/+DwICoJ1VRS7E7Mm+bRv6mTNp+PZbXDk5SIBtyxZ0I099TH+pcj5PBtqTwMBAKioqMBgMuFwuRFHEarW2+eGotraW2tpaBgwYQGhoKBUVFezdu7dT1tqcvn37UlxcTO/evfH19cVkMnH48GH69u172tcFaWW3xXm9HydcH872ypm8dewd9tdmYHKa+E/2B3yRv4R+fn0ZENifWkcd0YbOMz1qJIEE7uO+Uyzqj3CEgxxkAhPwpfMdawGGpAWxfsM4hg1dw8GDJu64Yyev/XMAM2dGExAQgNPpxGKxIAgCDoeGuroQAgJMp53TaDS2UDoBiIyMZPPmzR15KQoKCh1MVwhQW7t7S5IkvSlJ0mBJku6TJOm9E4O5kiTdI0nSbEmStrQ2mSRJ/5EkaQh0cas0hUuDwYPbPfCGC9Ox9vvb39CNGoX+ppsAqH/lFcwvv4xktbb7Oi8W5/tkoL2Ijo7GZJIDo0a5QJPJ1GbDpdlsJiEhAavVypEjR7BarSQkJGA2t65+0VGMHz8ePz8/8vLy2L9/P3l5efj5+TF+/Pizen28Tw+81V4kByTxx77z+WXSdkaFjMRP7Ueds47tVTsYtHoY0zbfyIHag9jd9k5XR1GhQkNTI6sLFz/yI3vZy3/57ymBeWei04mMHhOGn5+a0tIG/vRsJk6nm8DAQHx8fAgJCUGvTyI39zZKSm7C2/v0P+/BwcEUFxe3GCsuLiY4WKm6VFC4lOkKme9CaGFtFgUUt3GsgsLFRZLaTYLwQnSs6/7wB9QxMQhqNa68PHwefxzO8Aj7UuJCngy0xbk0cDZagNfW1qLRaDwlAm2VkajVatxuN263G61W69lWqzv3FhsVFUVaWhqrV6+moqKC0NDQ86qTD9eHEa4Pw+l2MiF8HP8d8i9eyvoHS4uWUeuow+Q08astM0gNSOHq4OHM7/uHDrqiM2PDRiihGDFyNVcj0rnyjifz5puD+NWvIrn+us0cO2bmnnt24XKJuFw2HA4HDQ1arFYDNpsVozHptHPNmDHDU+PdWPOdnp5+Wkt6BQWFro/Q2VmLE6UjKxvVTgRBUANHgAlAEZAOzJIk6cAFnscXqKurq8PX9+I8hlS4zCgogC++gKlT4QyP8c8KSZLnDA9vGTgXFEBZmWyPFxzcarDvrq9H8PKibv58rAsXIsbFIeh0+L/zDuo+fRBUXeGh1oXRnmonhYWFrFy5EkEQkCTJ8/fUqVNbnXPMmDF069aNXr164e3tTX19PUePHqW0tJSNGzeecvyECRPw8/MjJCQEURRxuVxUVlZSV1fHunXrzmvN50PzRtWTP7RcaKPqt0XLUaEiz5LPW0ffodpRA4BepWdm1AzyLYUsuXrxRTHqAcgll2iiWwTfRziCN950p3unrsVkcjB40Gpyc+VG14SePzNypAmz2YzNZqO0dByBgTYcjjWsXv3jaedauXIlS5cuxWg0EhwczIwZM5RmSwWFLojJZMLPzw/AT5Kk09aUdbbU4GJgLBAiCEIh8JwkSR8IgvAg8COy1OCH7RB4/wq48ULXq6DgwWaDV18Fq1UOwJ95pqkZ83woLIQ33oC6Opg7F/o3U5LYvh3WrgVRhDfflI1/GjmReVd5e2PbsAFVaCiCRoMrNxff555D068fdc88gyo0FJ+HH8by0Ufob7kFVRsNd12Z9nS43LBhg6cUpDGYPn78OBs2bGg1i2g0GomPj0eSJGw2G5Ik4eXlhdFobHX+xMRE8vLyCAoKIjg4GKPRSFFREYmJie2y/rPldBKWF/peTu8+DYBCSxG7q/dwVfAw3jz6NuW2ChbmL0YjaHhy/9P4a/y5NWYmCT6d674aR1yLf9uwsZzlmDEznOFcwzWdthZfXw1Zh6/jhulb+OGHUnKyB+HltZaEBBdarZaoqM3U1NR4nFBPx9SpU5VgW0HhMqNTg29Jkn7Txvj3wPfteJ4VgiBsAO5orzkVrnB0Olnre+lSuOqqlgHx+RAaCo3ybwcOtAy+8/Plv6OiWp7H7YannoKYGBg3DjEqCp1Wi1RVheWTT7B8/DFec+bg+8ILSCcCRse+fRhmz8a6dCm2desIePttbD/9hDopCTG8paX35cyhQ4dIS0vDx0fWrPbx8aFHjx6kp6e3erwkSR6zmkY78Mbx1mgMug8fPszBgwfR6/UMGjSo0+uhO6NRNcqrOx8O/S8AWyrPZS35AAAgAElEQVS3Ee/dg2+LV1BkLeKj3E8QBZHihmJujb4ZURC5OmR4u537XCigACtyH8TJRj2dgUolcOuvY9i6tRKTCQ5kTiI6egUGg/zUxeFweBxTJQlcrgu/rSgoKFwaKD/qCgpny8SJEB8PvXqd+2vNZvBpZlai08G114K/PyQntzz2oYfkzLjd3nI8Jweqq+WvgQNRDx+OFBWFu64O68KFuPLysH79NV6/+Q2ClxcA/q+/DoD++uvRXn01APbNm1F164Zks1F7//0Ef/cdjqwsBC8v1DExXI401mCfaawRjUZDWVkZffr08WTKs7Ky2nSsdLvdpKWltWhsrKmpaTO47ygaG1WbN6Z2ZKPqJ0M/AKB/QAof5XxKSUMpeZY8vir4mq8L/seQwMG8MehVLC4ryX5JnVqS0pOePMAD7GMfqbTU6HfgaNG02VHMnh1Ln96+DB/+I263luPHxzB1ajlut6x6Ul1djdUKJ8q6+d3vTq0yU8pOFBQuP5TgW0HhbBHF8wu8a2pgwQJIS4OZM6GxHvtXv2r9eI1G1hg/GZ0Ohg+XM+VJcqOWq6AA6+LFGPr3x7J+PaaHHqJh6VI0ycmok5PRpKQgxscjaLWeTLfvc88BINls+L3yCgD2jRtRBQUhRkdTNW0agYsXIzU0INXXo46NPfdr7mL07duXI0eOtJDgO3LkSJsSfDExMdTW1lJaWupptLRarcS08eHkXOfvKDqiUfV0NAbTN3SfzqTwiagEFWPWT0AURLLrc9hZnc6IdWMJ0gWy+KqFJHjH46327rQgPIggxjGuxZgZM+/xHoMZzChGdbhL5uAhQfj4VGE2h3E4K4S6WhPDrz5Et27dMBqNfPMN7NolH5ucLP+IN6KY7CgoXJ50esNlZ6E0XCp0OHY7fPUVTJokN022xVtvQWamvH1yfff5cLLiiiThfPBBqhYtwg1wIuvduE+QJNS9eqEZNgz1wIFoUlLkpswTj7xbTO12Y9+4Ed24cTSsWoV982b8/vY36p59FsOsWah79sRdXo7YvXMb2C6UwsJCli9fjt1u95SRaLVapk2b1mot9NNPP43L5eLAgQNYLBa8vLxISkpCFEUWLFhwwfN3JO3ZqHo+ZJtziPWO4bE989hcuYVCa5FnX7Qhmt/F38l9CfcAXJTmzG/4hgxks6bZzKYX5/GB+hwZP34yuTljKSzshUrlZsaMA9Rb9mKxWFi6dC1/+QtER8Mdd0DzX1d33XUX/fr1a/GhLz8/n4MHD/LBBx90+LoVFBTOnnNpuLwsg+9mDZd3KMG3QofgdMLf/w55ebL1/LPPti1BaDTCv/4ll6zMmtXuS3HX11PZvz/Bjz8uW1bb7TgyMnBmZOAqKGiqLffxkbP3gKBWI0ZEoElIQD1kCJoRI1D364eqjZ8V29q1aAYNwl1ZSc3cuYSsXYv1iy9QdeuGbuxY3HV1qOSbTpflXILShQsXsnPnToxGo0d2MDg4mKFDh7Yp83axg96uxlHTMTQqDTuNO/nzwb9Rbiv37EsLHEKAJoBFwz/p9HUVUcQKVhBIILdya6ec89prr0UQgtiwfhoul4hK5Wb06O9QieX88MMPGI0QFHTqLeSGG27g1ltvbSFZ6XQ6+fLLL1m2bFmnrF1BQeHs6LJqJ52F0nCp0OGo1XLpR16ebMJzugxecDDMm9dh3VQqb2+CN21CjIw8ReHY/eWXOBYuxFldjaNvXxwHD8qumE4nzkOHcGZmwnffwQk1FDEuDk1iIhqzGXXPnqhvvRVx4EB0EyfK5/LzI2TNGnm7e3dUgYFITiflvXsTnpOD48ABXLm5GG66CcnpROhCHWTnop7idDrZvn07/v7+iKJIbW0tR48eZdCgQe0y/5VAL9+eAPiofVAJIv4aP57NfJ7s+hzSq+U6i1u3zUIn6nhtwCuE6DrHOKY73bmHe7DTsqeihhpyyaU//RFa9X47f7RaLYGBGsaOW8emjWNwOHRkZQ0jtf9qQL5FtEajyU7zzLdisqOgcOlzWWa+QSk7UegEJAmWLIFRoyAioml8/345KB8/3hPUdgaml1/G++67UQUFtdxhs0F5ufxcG3CbzTgPHMD5zDM4SktxuN24TCYkp1M+3uWSG0QBvL1Rde+OJjVVriM3GtGUlKDq1QvhmWc8p5AkCWHDBhwFBbgA/e23UzlyJP5vvYUqOhrbd9/h9dvfdsK70D5MmzYNq9VKcHAwarUap9OJ0WjEYDCwfPnyi728S5ZXs/5JvE8P/n38fXbX7PGMjwi5mmvCJ5EWNITBQW1/wOkoJCQ+53OOcpQe9OA2bmtXs57rr78ef39/QkJC2P5zD/bu7Q4I+PlVUmm8/5TjN2+Ghgaw2U6t+W402VFqvhUUuhZXfOZbQaFTEAS45ZZTx7//XlYmiYm58Pruc0AMC0Oy27F+9RVotRhuuAHHoUOoe/ZEaGaLrvLxQTtsGNoVK6C4GHQ6pNBQnIcP48jMxLlpE47163GWlSGpVLjLyrCtWYNtzRq5hMXhQOXlhXr//qbGzj59ED//HI1KhWb6dACC168HlQrX99/j/uwzKC6mNj8fzahReM2ahWXRIgy9e8s5xtBQ6EKNnceOHWPw4MHEx8ej1+tpaGggOzubX3755WIv7ZLm8T6PAuCvDeC74u/Jrc9lc+VWtlZuY2vlNvr69eHZvk/jJRq4OrTzJArNmCmlFIAAAtrdJVOj0eB2uwkPD+fWX4t4eVezbWsQdXUhrFpVwpQpTR/eV6yAlSvl28tDD03ltttg6dKlbN68meDgYCXwVlC4DFAy3woK7YnFIpvxFBbKqiYvvABhYZ26BMe+faBSoUlJoXL0aIKWLcN55AgN332H31/+gmPfPlTduyOGhJx2HsnlwpWTI9ePZ2bKf+/ahbumRo4MmrtyShJCfT3qwEA0I0eivu66psbODRvgm28AcL/4Img0CFottQ88gH9MDNYNG3B5e+O7YgW2TZvQ9O+PqvF99PGBX/8a+vRpOtfx41BZKcs0Nh9vR/r27cvUqVMJDQ31jFVUVLBy5UoOHTrUIee8ErG6rIxfP5koryg2VmzyjAdrg3hj4GsMCBhAmD70NDO0Hw00sIlNjGQkXjQ1Lbtxo+LCHGPvvvtudDodpaWl2O12NBoda9fcgNWqRadT8cWXw7n++khAvnW8/DLo9XDffXJVm4KCQtdHabhUGi4VLiaSBLm5co13s4zzxcRVUYErPx/t4MHUPfssumuuQZOSQtW0aQRv2IDz0CFwONCcIVMvSRLu4uKWAXlmJq6SEvm6G5VYTtTAexo7/fxQh4Sgefhh1ElJTY2dTz6Ju6wMKTUV8dFHqZk7F58nnkDKzKR+3jwCRo/GecMNqIYORdVY57pwofxc3tcXTkglenjpJTlqueoq+asRqxXq62UlGIPh9DX6QFpaGsnJycTFxXmkBnNzc8nMzOx07e7LHUmSEASBe9Lv53h9Nhm1mZ593qI3T/adx1097kSt6vwHtRISn/AJEUQwjnFoOVUh6GyYP38+JpMJlUqF0+lErVZTXu7F2jWpmM06+vf3Z/OWCej1csb9wAG5jzsgoD2vRkFBoSO54oNvUDLfCgpnQnI4cGZloUlJwfrtt0hmM16zZ1M5ciQBCxci6HTYt27FMHMmktuNoGo7++c2GuWSlWYBufM0ropiXJycGU9IQBMfjzolBbF376b5jhzBtWQJmuBgTLm5aEaORHfNNVTPmkXg2LFIO3dCt26oXn65aVK7HX7/e3n7hhtkR9JGtm2DT04oa7z0EjQ3nfnqKzk4j4+X6/eBuXPnUlhYSFhYGBqNBofDQXl5OVFRUbz77rtn/yYrnDUuyYVLcrGq5EeeyniWSlslEvLvp276cAYHDub9tPcQhfYtCTkd6aTzHd8BMIYxp2iGny3PP/88e/bsYciQIYSHh1NWVsauXbvw9R3Jkq/ikCRISfFn1y+TLor8ooKCwoWj1HwrKCicEUGjQZOSAoDhRJ02QOCSJahCQ3FlZ+MqkjWaa+bMQX/ddehnzsT8l7/g8+yzciOnRoOgVqMKDkY3Zgy6MWM887jNZpwHD3oCckdGBq4jR5CcTly5ubhyc1usRxUejiYlRQ7Kk5PR3H47UlQUvieCEclux2vOHISxY7FKEq6cHHyBumeewfu++1B5eSH16YOqoeFU3fWamqbt5jroAIcOybXvJpMn+L7zzjv56JVXGL1vHzU6HYcjInAEBnLnnXdewDuucDpEQUQURKZFTiUtaDAmh5nZO35LoaWQ0oYyviv5nhHrxuCj9mXlyKXo1foOX1MccUQRhQkTIzh/oyKbzcbQoUM5evQo+/fvx9vbm6FDh2IyVTF//rW89FIWGRm1fPxRDnfOiT/l9SUlchvJCZNaBQWFSxwl+FZQUGiBeEK5RZ2YiE9iIgAB778vq6DY7aDXI6hU1H/+Oc79+/F/4w1ML76IYdYsxG7dcFdVIUZEyI2dQ4eiHTrUM7dktzc1dmZm4ti/H+fBg0hWq9zYWVaGbe1az/Eqf3/UKSlNjZ3JyUhaLV4PPug5RpOaihAQgCMzE9OaNQR//z2WRYvQCAKagQOR7HaE/v3lZ/gWC5xsLhQaKqu7NAvY09LS0M+YgePVV2morUVKS2PIrFmkpaXJByxaBAcPymVF993Xcr7jx+VzBQR4dNUVzh5BEIg0RIIB3hv8Nj5qH57LfIGNFZvJrs8BYNT68QwPHsY98b8jOSCpw9YSSihzmEMttS1KTty4ySGHBM6uINtiseDv78+ECRM8ZUxFRUVYrRZefDGZbdsq2bSpkgcf3I0oCtz+2yaH28WLM3nzTStms50JEzKYPXtw0/9DBQWFSxKl7ERBQeG8aazXtSxejP6aa3AVF1P3xBMEf/899f/5D2JcHPrJk3Hs2YM6NRWhlWDU09iZmYnzRIbcmZkpN3a2gqDXo05KahGQq/v0QdDpPOtpWL4csVcvxO7dZQ3y4mIcO3ciWSzoxo3zHNcCt1tukm3k0CH49lsoK4PnnmtZgPvmm3JhbmwsPPVU03hDAzz8sLx9441wzTVN+/Lz5fRlaCgkJnaY7vvlyFHTMQ7WZbGpYhOf53+BS3IB0E3fjbt63MmAgFTGhI3utPVsZStrWEMSSUxlKgYMpz1+/vz5WCyWFr+LTCYTXl5evPzyyxw5UseNM7Zy5IiZbt107N13LUFBWtLT0/ngg9UcPz4TrdablJQs3O7V3HzzzUoArqDQxVDKThQUFDqFxgDW6ze/AUAVFETw998DoBkyBJW/P5LLRc0DDxCycSMNa9bg2LMH3z/+Efv27agTE1EFBcmGPj17yrXanL6xU2powPHLLziayf4JajVir15NJSvJyYhRUah8fQnPz0cQBKSGBiSrFYCKAQMIWr4cQaPBsWcP+uuvbxl4A/TtK3/JC2q5r18/WcP9ZMWYqqqm7eZ15SDrv69YIW+//XbLfatXy+ox8fFdpkm3K9HLtye9fHsyIXwcXqIXDredz/I+p7ShlAWHXsRX7cv8Pn9gZMgI+vn37dC1OHGyne0AlFGGBs1Zva6oqIiIiAi8vLywWCyUlJTQq5dsbZ+Y6Meyb0cxoP+PlJbauGbyBn7ePpHVq1czcmQsqal1aDQ1JCSoKC5OZfXq1UrwraBwCXNZZr4VtRMFha6Jq6wMt9GIpl8/ah9/HK8770Tw8aF27lyCv/8e+y+/IOj1aJJaLyVotbEzJ+fU4PgEnsbO5GTP32JICO7aWgRfX5yHDmFbvRqfRx+l5t570d90E7qJE2lYvhzj4MFkZGaem118Q4NcdlJVJQfozZ0IP/4Yfv5ZzqA3bxSVJHjkEfm1o0fD7NlN+8rLm6QvevQAzdkFelcC/8h6lay6w6wpW0eDuwEAtaDm8d6PcGfcbwnSBZ1hhvPHjJlVrGIYw4gh5ozH33XXXURGylKCFosFrxN9B8XFxXzwwQee41544QAL/noQgPlP9sFk+oDrr78esdkTI5fLxXfffcfrr7/enpekoKBwgShqJyhlJwoKlwqS3Y4rNxd1YiLWL75A8PVFd911lPfpQ+j27XLAfeAAhunTW7WsP6WxMzMT1+HDTY6dJ9HY2NkYkGuSk1FFReGuqEDQ68HppOT++9ly443027sXL52OimuvpWrtWlJ//WuievY8vwt1u+XGT7NZNmBqxGSSS1fsdrj1VtkZtZEtW+Czz+TtP/+5ZSNpdrbcPBoWdmrW/gpiU/kWnsp4hiJrMfWuegD0Kh0TwsfzxsDX8NP4ddpadrITL7xIJrnF+O9+9zuioqKIjo7Gx8cHs9lMQUEBhYWFvP/++y2OffTRPbzz9jEArr++jJtmBngCd5AD9uzsAmbO/CP9+nX8NSkoKJwdSvCNEnwrKFzquMrKUIWFyXXgu3fjdccdGKdNw/vBB9GOHEn9P/6B73PP4TabEXQ6hGZZ4VMaOzMycB444Ck7ORmVv3+L7Pg2oxHvfv0IkiRwOJAiIxHvuYfsuXMZGxcnGxb9+c84c3JQhYWh8va+sIuVJDlbrtPJxkKNfPONXJKi0ch15s2D7Oeeg9JS2UV17tymcYdDDuQvdE2XGEZbFePWT8TsqsfsNAPgo/YhytCdb0d+Q6A28AwzXBhFFPEBH+DGfYos4YIFCxBFkbKyMkwmE76+voSHh+NyuXj66adbzGM2O7l6+FqyskzodDD7tn2MHNnHI1G4Y8dRXK67kaQoHn1Ubh9QUFC4+Cg13woKCpc84oksryY1FU1qKgBBS5eCJCHV16M64T5p+c9/kMxmfP/0J+qefBLvxx5D8PZGFRTkqUWHkxo7G5VWTjR2umtrsW/din3rVgDirVY0Pj64ExJwJSbiTkzE+cgjGOvqEOPj0U+bBoD51Vcx3HQTmiFDqJs3j4D33sNdXY1gMMhZ9LNFEFqWqDRy440wdqwcmDcPvB0OuREUoFlWFIDDh+Gtt+Sa89//Xi5Z8bwJ0hkNhi5VgnVB/DJ5BxaXhft/+T1bKrZidprJMh1m8Jqr6Ovbh7/3f5Ek/45JFzfQgB49Nmz0pneLff3792fhwoWkpaURGRlJcXEx6enp3HbbbafM4+OjZu26sQzo/yOVlXY2bhhCePhBdu3aRWhoKJMm3ciPP0bhcsFPPynBt4LCpYiS+VZQUOiSFBYWkpGRcVY11x7VlYULMcyciWP3burfe4/ATz/F9Pe/o736arQjRuD4+Wc0w4d7GkU9jZ0nBeSW3FwElQpVs0DVLUm4BQGf5lrkycmok5JAELCtWYNhxgzMr76K5HLh+8QT1P3pT/g89hiClxeoVKeUzJw3bresnlJYKDdoxsY27fvhB1i6VN5+7bWWGfDXX5cD+QED5MD+MsXpdlLSUMoX+V/x+pE3cUgOAAyigesjpjCj+3QmdZvY7ueto44CCkiiZc/CqlWrOHDgADt37qS2thZ/f3+GDh1KUlISU5qbQTXjvX8d49FH9+BywQ03RPLVkiad8W3b5G//zTcrapYKCl0FpewEJfhWULiUKSwsZOvWrcTGxuLv709tbS15eXmMGDHizE2PJ2HftQsxIgLBz4/qmTMJ/vFHLIsX466sxOf3v8f200+yMotfU21wYUYGGd98Q7TZjHdBAVJWFkJBAVqNpkXzWyMtGjtPSCCqQkKwvPsuXvfei+2HH7B8+ilBX32FZdEitMOGISYkgCSd1jn0vMjPl5s0jUY4ObP6hz/INebDh8MddzSNl5fLAXtcHAwbdtn4mrslN79U7WZ3zR7+nvUKphPlKGpBze1xtzExfDwTwyd06BqKKeapH56i3/F+9Irsha+vLyaTifz8fFQqFb9vdGVthXfePsqjj+4F4K23B3LvvefZb6CgoNDhKME3SvCtoHAps2rVKgIDAwlsJtdXXV1NdXV1m5nCc8FVWopksaCOj6dm7lx8n3oKV3k55hdfJGjJEmybNlEhSWRYLFRXVREYFERKfDxhtbUtGzuPHEFyyFlVl8uF0+nE7XajUqlQR0TgNWhQUy15376IsbFYP/kE7ejRIIpUXXcdYQcOYN+2DfR6tIMGXfC1tYnbDcuXy26e/fvDiGaOjdu3w0cfydvPPNNS7vDYMdDr5fKWS7ixc2P5JvZU7+XD3I8pbZBLdgQE/i92NnN63NEhEoU2bPybf7Ns0zKCVEGM3DcSe70dg8GAKIpUV1efUvPdHLfbzeBBazhwoA5BgJ3pE+nfv/Xa9crKU5UvFRQUOo8rvua7mdSggoLCJUh1dTVxcXEtxvz9/cnOzm6X+cVu3TzbAe++C4AqNBS/V14BwJWdTWhCAtdOmEBZbCzh+fk4DxzAVVGB15w5SDabbOpzorGzbONGCtetI6SyEl1eHpLVir24GCoqEE927ExOxpWXhzolhYDPPpNr0cvLEby8kCSJiuRkQrZtw11bi6ugAN2I87c1b4FK5dFRPwWHQ85219efWkP+xRdQUCBrnj/ySPus5SIwJmw0Y8JGc13kFN499h5bKreRb8nn07yFfJa3iPFh41iQ/ALxvqfau18IkUQiCAL6DD0GtYGI2AhqamrIycnB39//tK9VqVRs2TqB4cPXknXIxK23bGPL1gmEhDT1E7jd8kOLdevg0UfhhHS4goJCF0bJfCsoKHQ5OjrzfS64q6tRBQZi37kTV0EBhptuonL0aPxefRUxNhbLBx+wZcAAgkSRgIgIEEWEwkKse/bgPHCAHjYbzoyM0zt29uuHJiUFMSkJMSwM3ZgxOH75BXt6Oj4PP0z1nDl4z52LJjkZ+86d6EZ3kJtjfX3LGnG7XXbsdLtlt87mdeLHj8Onn0LPnnDdda03jHZh7C47v95+G0XWInLqcwE5E97TpycfDf0vib7tE8VKSDz2r8fwKfGhIL+A+vp6vL29iY6JRq/Tnzbz3ciGDeVcf90mHA6JlBR/0ndNQqWS+xEKC+FvfwOXCyIi4E9/uqQfUCgoXLIoZScowbeCwqVMe9Z8dwSS2w2Au7IS248/skwUuWrrVggJwTFrFrrnnsM6bx4Zu3dz05QpqLp3b9nYmZGBMyMDV0lJq/Of7Nip8vdHM3IkOByYX3iBgA8+oP7tt1FFRGC46SYc+/ahTkpqv4ZOz4VKspxhTg5ERbXUJ//xR/jf/+Ttl19uWSd+6BD4+8vRYBdXV3FJLp7c9zSrSn+g3FYByEF4d0Mk/x3ybwYHDbzgc8ybN4/s7GwGDBhAeHg4RRVFrAhaQaollY8f//is5li6tJBbb/kZgL8uSOaJJ5rKZLZtkxUpH3xQKT1RULhYKME3SvCtoHCpcy5qJxebFpl6SUK9YgUVI0fiXLuWlOpq/F97jbonn0R/yy1oUlKw79iBbuRI3FVVpyitnK1jpyowUM6YDxhA5ahRhKxbh337dpyZmXg/+CCuoiJU4eHtH5A3kp4OW7dCXZ2cbm1EkuDJJ2VDoWHDYM6cjjl/O+OW3CzO+5InM57G5rZ5xgcFDOTennczo/v08577rrvuIiYmBq1WS0NDA9kp2RSEFFBbW8uX078kkbPTC7xm8gbWr5c/ICz5+mqmT2+SkXQ6oaO+1QoKCmdGCb5Rgm8FBYXO42wy9fadO1EnJCDZbNQ9/jiBixdT//bbCF5eeM2ZQ8PKlWjHjQNJwnnokCcgP7mx82SaO3aqwsIQg4LQ/epXVM+cic+TTyJGRVH/73/j9/zzuE0mBG/v9lVYOVk7vLwcnn1W3r7lFpjQTE0kK0t27ezXDwYPlk2Fuhgut4u15ev4/e5HqHHUesbHhI5masR1/LbH/53znHfffTe9evUiPDwcg8FAjiaHjYEbqc+uZ/2c9ag4u++H0+nmmskb2by5kpAQLTvTJxEV5dXqsVVVstR7F3/woKBw2aAE3yjBt4KCQudyPpl6V0kJuN2I3btTPWcO/m+8gX37dqyLFxP44Yc0rFqFundvxKgoHIcPy5nxxrKVgweRLJZW5/U4diYno4qJQTKZ8H7gAer++EfU8fF43Xsv5r/8BZ/582WhaFH0aJ9fMI2lKkeOyEH2CTMkAL78UnaGUangn/+UVVQa6WKp23qHhW3Gbfzl4N/IMh32jI8KGcmdcbcztfv1Zz3XggULCAwMxOVyYbVaMRgMOPQOampq+PO8P3uOc+JERESg7e9FcbGV3onfY7O56d7dwOEj16HVtgzeDx2C996DSZNg6tRzuGgFBYXzRgm+UYJvBQWFSxPJbsdtNCJGRFD/3ntohw9HjI6mvH9/wvPzsW/dimS1ohs/HueBAzizs5sC8sxM3NXVrc7b2NipTkpC3a8fzt278X35ZRo+/xz77t0EvP02ls8/RzduHGJERMdc3JIlcoFy9+6y5ngjTifMmyePT54MJxxNuwI2l43lxStZlLeYbcafPeODAwfxRJ/HGRs65owfXNLT03n33XfRarWIoojL5cJutzN37lzS0tI8xy1nOWbMTGc63ni3Od/WLZWMH78eSYIHHujJP19vqkt3u+H552UDVEGQK4JOFrBRUFBof5TgGyX4VlBQuLxwm82ofHywbdmCZLWinzSJ8tRUgv73PxAEGr79Fu9HH8W5fz/O/HxcR454AnJXcXGrcwpqNaqePdH07Ytm4EAce/fi/dBDUF9P3fz5BK9ejX3bNlShoajbS8PO7QazGZqZGnHkCLz6qrx9110wdGjTvro6MBhAo2mf858nbsnNu8feY1PFFjZUbPSMRxuiebn/AiaEjW8zCE9PT+edd95BFEWPG6vL5eKBBx7wBN+HOMSXfAlAEknczM2nXc8T8/by+utHAfjHK/15+OGmuvGyMvntvOUWGDLkgi5bQUHhLFGCb5TgW0FB4fKn8f7tLirCnp6OYcYMah97DO1VV6G/6SZqbr+dgE8/xXn0KI7MTKTyco/SyukaO1WxsWh69UKTloYrPx/tiBHor7uOimHDCE1Px1VYiGQ2o0lObkHjlOsAACAASURBVJ8LKS2FTZsgMxPmz28pd/jhh7BnDwwaBHfe2T7nu0A+y13ElwVL2FmV7hnz1/jz+oBXmRJxDSqhZRnIggULsNls5Ofne6QGY2Ji0Ol0HqnBBhpYwQpyyOE+7sMPP06HJEnMmvUz33xdhF4v8PP2SSQlNemG2+2g1bbjRSsoKJyWKz74bmayc4cSfCsoKFyJSHY7DStXYrjxRqxff43z8GF8n36amnvvxefxx8HPD9vKlQiiKDt2ZmSctrFTCAvj/9u77/Coqq2P4989k0mjE3oRld6UIgFEsIBgF0QEu6JXseDF8ioqolcvYkewXhWu5YoKWBAFBEERRXrvSC/BQAikJ1P2+8cZIJEigSSTTH6f58mTmVPXOZnjLLZr7x1Rrx6RnTo5teZuN+WGDGH/rbdSbuhQXDVq4N+8GU/LlgV3EYGAU56Snu4k33fffXhdZqbTYt64cd7a8SI0K3E2j694kj/SNh5aVj2qOv9sdD+3n3ErbuMG4Nprr8Xn81GxYkUiIiLw+Xzs37+fiIgIJkyYcGhfiyWFFCqQd/KdbLKJ4sjOqampXho2mMy+fTlUrRbFmjWXUr780f8Pgdfr/MQevX+miJyiUp98g1q+RUSOJmfePCKaNyeQkEDa669T8a23SP3Xv4ho1ozonj1JGzkSd40a+Nas+fuOneXL46pdm8iOHXFVrkzO3LnOKC6jRuFp1YqoCy/Et2ED7gYNTq5Dp98PS5fCihXQokXeGopFi+C995wOo48+Cn+ZEbUorUlZS//5/2BT+mYszndqvdh6XFf3Wh5s9AAd4jtQv359mjdvTmxsLBkZGaxatYqNGzeycOHC4x57Nav5nu/pRS8a0OCI9cuX76fzeT+SmWnp2asWX3xx7hH3OjUV3n7b6ec6aFDIK3hEwpKSb5R8i4icKH9CAkRE4Kpcmf133EHF0aPJHDcO79y5lH/tNdLffhsTE4M/IcFpIV+16rgdO121a+Np2RJP27akvfQSVZcuJWf2bOy+fcT060cgKQlTufKpjbDyySfOsIUejzNySu6McvFip/Nm9eonf/yT8EfqHwxeMYTZe349lISfUeZ0kicl0Sm9I7Wq1yIyMpKcnBx2797N8uXLWbBgwTGPl046b/AGWWQRQwyDGHTUFvCxY7dy263zAXjkkUY8P/zsPOvHj4cff3Re9+wJRTxJrEipoOQbJd8iIqfCer3YlBRccXGkjRxJ9FVXgd/Pvl69qLp8OZljx+JPSMAYQ86iRfjXrz9ux05TsyYR9eoR1b076SNGUPGTT3BVqkT25MmUue8+bE4OJj9FytnZsGEDJCXB+efnXf7ww06NxSWXQK9ep3gn8m9z2mZGbniTsds+P7QsOiOaemvrUOuPGkQQgcfjYdu2bcycOfO4x1rOcr7jO67hGprQ5JjbDbx/Mf/5z0aMgR9nXEDnzoeHePR6YdQoZ9zvW24pViM6ioQNJd8o+RYRKQw2KwsTHU32zJmYmBg8HTqQeMYZVF28GO/y5WRNnEhEw4Zk//47/k2b8G/ZctSOndZa3LVq4apYkeiePcmaNImYfv2IvfVW0l97jTLBoQjz3Tq+ciW88Ybz+r778g5bmJjojJxSRN8JG1I38sGm0fx300ccnEcnyhtFs01NCPzsJSYihm+//fZvj5NBBrHkLdZOJz3PcIReb4D28dNZuTKFypUjWbK0OzVrxhxan53tdMDUpDsihUPJN0q+RUSKysHh83ybN+PbsIHo7t3Zf9ddxPTti7tpUw7ceScxffqQ/dtv+NatI7Bt2xEdOw9+F7mqVsW4XMTccAO+detwVapE+ZdfJmv8eKJ69MBVocLRQsgrIcGpFe/WLW85yrvvwrJlzuyad95ZkLfguC7oewF7Wu0jqfE+Au7gdXoNNRdU59dhsykTkb9ekAc4wLu8S0ta0p3uROA0ZW/fnkF8u2kkJXmJj6/MTz9fiMdz7Nkz//yzyCtzRMKWkm+UfIuIFAeBjAxyZs8mukcPMj78EJuZSeydd5J0+eXE9OyJb8MGchYsILB79xEdO621YC3uihWx1hLTqxfExOBbtoxK48bhXbAAd716uE9kFpn0dGciH78fzj0Xbr01V5ABp0m4kJqFL774Yjp27Eiibw8L6i4mofpufG4fANGuaO5tcDf3NbiHcp4T+676lE/ZgDPG943cSEMOj8E+a1Yi3S+ehbVw551n8PY7Rw70bS18+y1MnQr33gsFOUCNSGml5Bsl3yIixVnOvHl42rTBt3IlmV99RblnnmF///6469UDj4esSZOwaWkEkpPzlJ5YayEQwFWmDERFEdmuHZHnnUfGmDHE/fwzgYQEcLmIqFcv7wmthU2b4PffoUMHaJBr5JB582DiRGjfHnr0KPChC3v37k2VKlUIBAJ4vV4CsZZlZ68ksXIi/sgAAGUjytK7Ti+ebDqYipEVj3u8ZJL5ki+pQQ2u4Mj544cOXckLw9cA8NnnHendu06e9YmJ8OyzTi14XJzzWnXgIqdGyTdKvkVEShr/7t2YmBiIiCB18GDKjxpF2rBheNesIbJNGzK/+gqbloY/MRE4XA9urQWfDxMdjSlXDnfNmsT060fWV19R/q23cFepQmD/fiJOO+3oJx45Elavdib3eemlAs9EH3zwQRYtWkSrVq2Ii4sjKSmJpUuX0rJ9S2JuLMuEHV+R4Xda/ctFlOWKmpcztPkQ4qIqH/te4cdiD5WcgFMbHkkkbuumd+85fDdpF7GxLn6f242mTfOW6yxbBhMmwMCBUK1agV6uSKmk5Bsl3yIi4cD6fNiMDFzly5P28svE3HYbvmXLOPDww5S5+24yv/6aQGIigb17sT4fuFyHk/JgL0NX5cqYQIDYe+/Ft3Il0X37EnXhhQQSE3FXrw6zZsGcOc5Y4ddff/jk2dnOOH1dusCxEvcTMHjwYFJSUsjJySEnJ4fIyEgiIyMpX748L7zwAqneVN7fNJrX1o8kJ5ADQKw7lutP68uDjf5Jteiqf3MGCBDgYz4mhxz60AfXgbK0afMD27dlUu/0WJYs6UHZsnn/UeHzqcVbpKAo+UbJt4hIOLNeL8bjIeuHH5xRU+rWZU+TJpR77jmyp0/Ht2qVU7aSmQlud96EPCICV9WqBHbtouzgwdiMDNz16xN7ww3Y7GxcB6eBnDULxo51Xj/4IDQ59lB/xzNo0CA6d+5MUlISWVlZREdHExcXx+zZs3n99dcPbZfuy+DjLZ/w0tpXSfenAxDpiuSWejcxsOG91IypecxzLGAB3/M9AO1ox+VczooVB+jQfjper+XaPnX49NMOxx09ZudOqFABypY9qcsUKdVKffKt6eVFREov34YN+BMTiYyPZ9/VVxPZpQv+nTvJnjQJIiIIpKSAMRi3M/27zXFam11xcfi3b6fswIG4ateGJUso4/FAXBxm2DBnishDJznxZuNhw4ZRr149auXqGLpr1y62bt3Kk08+ecT2mf5Mxm79nNfWj2RP9h4A3MbNzfVuZGDD+6gbW+eIffz4mc50NrGJO7mTSJwx00eP3sQ9AxYB8OqrZzPwgUZHjXHTJmcs8GrV4KGHCrzsXSTslfrkG9TyLSIihwVSUvAuW0bkueeS+txz2PR0TPnyZLzxBqZyZWfGTr8fPB6MMc5QiD4frgoVsKmpRPboQdRFFxHYuZOy992Hee45p9PmVVfBXzt3/sWCBQsYP348Z511FtWrV+fPP/9k+fLl9OnTh3bt2h1zv2x/Np9u/Yy3/niH7Zk7ADAYrj+tL/9sNJAzypx+xD455BxKvAEslnsGzmfMu9twu2HGjAs4t9ORZSz/+x/Mnu28vusuZzRGETlxSr5R8i0iIsdnrcW7aBERbdqQPWkSWZMn42nUiPS33oLISAIHDkBmJsTEOGOZWwsZGU7Hzuxs3OXKEfPAAwSsJfaOO3BXrQpZWUdtNl6wYAHTpk1jz549VK1ale7dux838c7NG/AyZvOHjN70X7ZkbAXAhYseNS5mSLMnaFiuwTH3nc1sfsmewyfnNGXT2mwqVoxgxcpLqV49b4x+P7z/vjPsYKdO+biJIgIo+QaUfIuIyMnxJyZiypYlsGMHqcOGEdm+PeljxmCTkrA5OdiUFKwxzvjgZctCSgqmQgVcFSti9u8nNj4e06oVkTfdhKdhw78/4QnyBXyM3fo5b/7x9qEk3GDoUrUzz7Z4mqbl89ak72Mfb/ImAQK4tlflzTa12L/fR5cuVZj6w/lEROSdgMdazYApcrKUfKPkW0RECo71+53OmtaS8uijeM46i+xp08iZPRsTE0PgwAGsy+W0jBuDDQQw5cvjqlYNMjOJHTAAV7VqeFq3xnPWWcft+Ph3AjbANzsn8u/Vw9mRufPQ8ouqXcCTTR+nZcUWh5atYhWTmczN3MyK6XD5ZU5tyf0DG/Daa62Pex6vF375BS66SEm5yN9R8o2SbxERKXw2EAC/n/T33oO0NPy//krGDz9gatfGHjjgJOEREWAMNjsb43Lhql4dm5VF7E03EdG4MRFNmuBp08bZLh8CNsAPu6czdOW/2BpsCQfoWu0iHmn8IG0rtwHAixcPHgBeeGENQ59aCcD4Cedy9dW1j3rsrCx46y1Yvx7OP98ZgVEJuMixKflGybeIiISI14t1ucj+8Ue8q1dDWhrpL7+MiY4m4PdjMzMxUVFYt9sZNcXrdcYbj4oiqksXPOeei6dRIychj4r629NZa5mZ+BPDVr/AypRVh5Z3qdKZR5o8SIe49oeWBQKWC7pPY+6sFCKjYfHiHjRqWP6IY6amwquvQkKCM8Li/feDx1Mwt0ckHCn5Rsm3iIgUE0uWwLvvYq3F16kT2ampkJ1NxmefYVNSCKSmYpOSnBk2DybkGRm4qlfHVakSEU2bEtWtm9NCfvbZuMofmSyDk4TP3vsrr6wdwdx98w4t7xjXnkcaP8R5VTphjeXl5Ld5uW0lUrZH0qBJLAvm9qBMmSNb3ffvh8mToU8fJd4if0fJN0q+RUSkmNi3z8li58+H4cOdJPugOXPwZ2SQtX07ZGaSNWUKvrVrCaSnOwl5dLQznrjPB2lpULUqEdWr465dm6hLLsHTogURLVs6I63k8vveuby87jV+3fvboWVnVziLx5s+StNqTXh92deM6lgVvw+uuaY2n33e8ZTq0EVKOyXfKPkWEZHiY8eOHaxesIC9mZlUqlSJli1bUqdmTXjsMafG4+yz4d57D20fSE8n5/ff8W/eTM68eeT88gs2K4tAUpIzQZDHAz6fM0FQuXK4qlcnompVoi69FE/LlkS0aIG7bl0WJS/m1XUjmJH406FjNy7XiMeaPsLeaU25605nAp433mjDLQNqEU00hmMn4b/8AtnZcPHFhXevREoiJd8o+RYRkeJhx44d/Pbbb9SrV48KFSpw4MABtm7dSpczz6Tm//7n9G687Tbo2PHwTl6v0+KdqzXaer14167Ft3Qp3tWryZ44EX9GBnb/fsjKchJyY7A+H0RF4a5cGVfNmkR17crasyryevnZ/JhxuBylQdn6VPypNz++VAOXcXH/7L2cF1+Ty7n8UAfN3H75BT791Hl93XXQtWth3TGRkkfJN0q+RUSkeJgyZQqVKlWiUqVKh5YlJyeTnJzMpd26wdKlcNZZkLtz5bhxzlAjl10GrVsfc6gRGwg4reMrVuBfuZKsqVPxJyQ4EwSlpDg15JGR4Pdj3G42NCrDe71jmN4kCxs8pGdPDfZ/ejGeP5pz15ItXFflUs7hnCPOtXMnjBjhTMjz0ENQt26B3iaREk3JN0q+RUSkeBg7diytW7fG5To8qU0gEGDJkiXccMMNR+6QmgqPP+60fjdtCoMG5et81loCCQl4V67Et2IF2bNn41u7Fn9SkpOQG8OmM2IYfbmbKZ0iCbicLLzSLg8NfjuL8e99RmxsmaMeOyEBcnKgXr18hSQS9pR8o+RbRESKh+O2fF966ZE7ZGXBjBnOz913Q+PGh9elpEBMzEkNPxJITj6UkOcsXEjOwoVs8e1idA/DpPM8+COcJPzMjW5ebPUB51/UHS9eXLhw4z7mcVNTnYk+1V9TSjMl3yj5FhGR4uFYNd+dOnWiTp06x94xJ8dJsnNntR98AOvWQY8e0K3bKccWSE/Ht2YNm1f9wrNbxzKjxS4CbkN0luXGDZdxzuOXkOzeTx/6UIEKR+z/55/wyivQoQNcc40ScCm9Sn3ybYy5ErgGuE3Jt4iIhNqOHTtYsWIFycnJh0c7OV7ifTSJiTB0KFgL7dtD//4FHuenn/yH4RnPkljDed98aSzn9LuSdo07cB3X5dnWWnj5Zdi40Xk/aJBTJSNSGpX65BvU8i0iImEmEIAFC2DqVPjHP6BWrcPrEhKccpSKFU/5NLt37WLA25cxp90eACrts9yTNYBB9ww9YtukJHjtNWegliuuOOVTi5RYSr5R8i0iImHK2iPrO157zWmCvugi6N27QE7z4quP8X61T0gp75zrwvmn8e7Dk6lUuRLZZBOFMzpLRoaT96vkREqz/CTfruOtFBERkWLmr1nuzp1OHbjP57SOF5DHHn6RCc0m0mxVLAA/xW+j26dn8Z9vXudN3mQrWwGIjc0bkt8Ps2YVaCgiYUXJt4iISElWuzY8+qgzS2b37nnXbdwIu3ef9KFbtW3H9P9bTb9FnfDkWLafFuBZ30v8/tRXfO79HC/ePNsHAjBmDIwd6/z2+0/61CJhS8m3iIhISVe/vjM9fYVcI5JYC598As88c3hqypPg8XgY9ew4/hM5itO2Gbwewy/nbOH7V99l5YIlebbNzIRdu5zXe/Y4jfEikpeSbxERkXC0ebPT6m0txMWd8uGuuPpaZtyykm7zzgBgbdMceq/vyfOvPAJANtmUKQOPPOJ0wHzggbyTdoqIQx0uRUREwtXu3fDTT04nzMjIw8s3bYJq1ZzZcU7Cu/95iZGe10mKc4q92y+M45y7rqZ73cvoQAcMR/a+DATApSY/CVMa7QQl3yIiIkfl9cKQIc5Mmr16wQUXnNRhNm7YwH1jr2JxqxQAqiZCp8jzeerWF6lL3TzbLlwIU6bAwIEFMhqiSLGj0U5ERETk6BYvhv37neQ7d2t4PtVv2JDvh6zk7lVXEpNh2VMNvi33M089eQfpaWmHttu6FUaPhh07YNQopwpGpDRT8i0iIlKaxMc7BdnnnOPMC5/b9u35GiPQ7Xbz3BPvMrbWpzTYEEHAbZgcv4qu7zXj5xnTyCKLOnUtXbpARAT066fxwEVUdiIiIiKQlgZPPgnlyztZcvPm+do9MyODgcN6833bZfjdhuhMy4Xrz6bHkzfT09WLA7tjqFmzkGIXCTGVnYiIiEj+/PyzU4qSmHhSu8fExvLBsCmMyHyOGgmGrBjDlLOX8/6wp/h67fgjEu+9e2HmTJWhSOmjlm8RERFxOmL+8gv88QfcdVfe+pC9e6FKlRM+1O5duxjw9uXMaeck8pWSLQMz7uP+e58EnEb2F1908vyuXaFPH5WjSMmmlm8RERHJH4/HyYTvvvvIxHvoUHjrLfjzzxM6VI1atfjm30t4ZOPNlE+xJFcyPFv7ba57ogNJe/eSnOYlJ8fZ1u1W4i2li5JvERERObZJk5x54pcvd8pS8uHRh17gy+bf0mJlDAA/t9/OxZ+fzZtzHmLA48lcdhlcc01hBC1SfKnsRERERI5t/3747jvIyYH+/fOuy8k5oeEK/X4/Dz97ExNazCIn0uDxWrosa8hHQ6cT6Tm8fyAA6emgr20paTTJDkq+RURECpS1eetDtmyBkSPh0kvhooucsQT/xveTvmTo5n+yvZ6TezReE83rF/6Ptu07Yi188gmsW+eMhFi9eiFdh0ghUM23iIiIFKzcibe18NVXkJEB33wD+/ad0CEuv7I3M29dyUXzTscELOuaZtHnj94Me+khliy1/PabU2L+xReFdA0ixYCSbxEREcm/bt2gRg1nevpq1U54twoVKvL587/x7J4HiUuypJU1jGz8BU983YxzOq+hShW47bZCi1ok5FR2IiIiIifH7wefD6KiDi9btQp+/dXpSVm16nF337xxIwM+uZIlrQ8AUDURBrkG8487BhZm1CIFTmUnIiIiUvjc7ryJdyAAEybA4sXOQN4+33F3P6N+fb59agnXrOpITIZlTzV4qtJwbn2yK+lpaYBzqE8/zdes9yLFmpJvERERKRjZ2VC3rvO6a9cT6oQZ5Y7inSfGM7LOSBqujyDgNkyJX0vX95rxxdipjBnjzP0zenQhxy5SRIpt2YkxpidwOVANeMtaO80YcxrwJrAXWG+tfeE4+6vsREREJBS2boWaNfMOQ7hwodNBs1Mnp8X8KLKzs7n/ud5813ox/ghDVJbl3BldqWg+5IEH3DRvXkTxi+RTsS07McaMMcYkGmNW/mX5JcaYdcaYP4wxgwGstd9Ya/8B3Ab0DW7aCPjeWtsfaFaUsYuIiMgJqlcvb+Lt9cL48U79yKhRx9wtKiqK9//9HSNynqXmLsiONvx0+Uz+qNWUCLOqCAIXKXxFXXbyIXBJ7gXGGDfwFnApTkJ9vTEmd2I9JLgeYAnQzxgzE/ip0KMVERGRU7dnz+HW7vj4v9382utv48Fe/6bNggoArGiVzlXzL2bUm88BkJQEq1cXWrQiharIy06MMacD31lrWwTfdwSesdb2CL5/PLjpC8Gf6dbaH4PrHgHmW2t/McZMsNZee5zzqOxERESkuPD5YN486NgRXLna/tavh9q1oUyZPJtbLEtZyrTXx/F+3EeklHfGGe8y/zQa2+/YlxzHDTdA585FeREiR1dsy06OoTawPdf7HcFlA4FuwLXGmAHBdVOBB4wx7wJbjnYwY8xdxpiFwKxCi1hERETyJyLCqffOnXinpsI778CQIbBgQZ7NDYbWtOaxQcP5uuX3tFgZA8Av8dv4vtbZpBwYS0JCUV6ASMH4+27Ihc8cZZm11o4CRv1l4UrgmK3dwW3eA9472PJdYFGKiIhIwZo/3+mECXmHLPyLlq1aM73lOgY825MpLRaxqy4kXvMIFZaOp1evcXg8niIKWOTUFYeW7x1A3Vzv6wC7QhSLiIiIFJWLLoJ77oEuXaBly7zrvN48b11uF5f/6w56xl5G3S0ufB7DhHbz6fpqExbMnYPX61SwiBR3xaHmOwJYD3QFdgILgBustafUrVk13yIiIiVUUhIMHw7duzsJenC8cItlHvOokhrH08P782O7jViXoWyapfv86yD7dS67DK64Im91i0hhK7Y138aYz4DfgcbGmB3GmDustT7gfuAHYA0wrgAS7yv5S8mKiIiIlBDjxzv14F9+Cdu2HVpsMHSgAw3KNeTT52czLOkRquy1pJU1fHXReDaWb8mi+Vs0G6YUa8V2kp1TpZZvERGREmrNGvj8c2e88P79j7vpwo3zGfzxzSxv40xHXzUR/i/icW67/f6iiFQEyF/Lt5JvERERKX58PsjJgdjYw8t27IClS6FHDwh2stzCFsb5x7H8pZn8Wm85GWUMLr/l4oVNePeJb0lNK0uNGiG6Bik1lHyj5FtERCSsWAuvvgobNkC1ajB06KEEPJ10NrOZlNlJPDr3VtY3cjprnr7JTZOF73Jt38u48kowRxtfTaQAFNuabxEREZGTkpYGmZnO65YtDyXeAGUoQwtacG7n85nxwDp6LWiD22fZcqafn6+6k4+/upU9e/whClwkr7Bs+Q52uLwGuE0t3yIiImEiEIDffoO2bfOWoyQkQPnyh2bJ9OHjsc8H8mPytyTUcjY5a3kZ3rzma5o0bx6CwCXcqewElZ2IiIiUCoEAPPccHDgAvXtDp05YLHOZy+Tdk1j2xvfMjd8LQIX9lvtT7mLAXc8cb04fkXxT2YmIiIiUDkuXwq5dkJ4OKc7E1gZDRzryzxoP8fWwxQze0p/yBywHKhqGnfY+PQfH883XewjT9kcp5tTyLSIiIiWXtU4C/vPPcP/9eWrBsfZQL8tVy5Yy8LtrWdnCqRuvtQPudb3IXffcFIKgJdyo7AQl3yIiIqVaTg689BJ06gTnnw8uF0v9S3ju6UHMO3sDOZGGCK/lqqXtGPnUOKJUhyKnoNSXnWiGSxERkVJu6lTYvt2ZrGfhQgDOdrdi2L//Q//I2zl9sxufx/BVu4V0e70Jv/82O8QBS2mhlm8REREJPytXwmefOaOiPP44uPK2N6ampnLP8CuZ3m491mUok27psqwbHwz/Lx6XO0RBS0mlshOUfIuIiJR6Xq/TCTMu7vCyzExYvhzi48EYRn8wgld5mb1VndrwVgsqMvrO76l7+umhiVlKpFJfdiIiIiKCx5M38Qb4+msYMwZGjIDMTO6480GGt/6MlvPLArC03X56/Hgu/x0zMgQBS2mg5FtERERKh6wsWLbs8PvoaACubns+3z29mtuXX0VshmVvVcPgSi9y4xPnM/nAVLx4QxSwhCOVnYiIiEjpkZkJEyfChRdC9eqHlwcC4HIx97dfePi3W9nQOAeAupvcdGnYi2FXDCeW2GMcVEq7Ul/zrenlRUREJF/GjAG3G3r3Jtvj4e6hvfkhfjH+CENUtqXv6q68+NSHuN3qjClHKvU139baScADoY5DRERESoDVq2HePJgzB778kqioKN577jtuX/gCNXdCdpTh49Yz6T68CatXLMePP9QRSwkWlsm3iIiIyAmrVg1atICoKLjqKgAiI+H54bcw/qIldF5QB4AVLTO4evElPPh6f77ma7LICmXUUkKFZdkJqOZbRERE8sFaSEqCKlXyLvv1V4iPZ8S7z/N2xfc5UNEZkrD1vIr0HzSEvtWuD1HAUpyU+ppvUPItIiIip2jhQnj/fahUCe65hxXJB7j/m96saZ0BQK2d8FSVF+h93c0hDlRCrdTXfIuIiIicskWLnN9eL1SpQstWZzGq51q6fHMhUdmWsAqpXgAAEbZJREFUXbVhoOsx7n7qKrKys0gmObTxSomglm8RERGRozlYdhITA+ecc2hxWqplzuzvGLL+XracEQCg4doI2p93Fdd2up4OdMCl9s1SpdS3fAeHGhwV6jhERESkBDMGOnfOk3gDlF36K91XrGbGpT/SY14jTMCyoYmPr7d+ydvDnieHnBAFLCVBWCbfGmpQRERECkVKCnz5JWzaRLmPP+aTf8+g/7zBVEmE9DKGaS2WcM3T8WzdtCnUkUoxFZbJt4iIiEihiIpyWsNdLrjuOnC5eOZfD3Bv+m+0mlsJgIVtkrh05nmMHj2CjWwkg4wQBy3FiWq+RURERPJr7968wxICvg2beX7CCP5bbwLpZQwmYImfX4OOT1xLv3L9OJMzQxSsFLZSX/MtIiIiUqj+knizdy8Rb4xgqK8qX5R9h0Zro7Euw7wOf/LVB+8wd/LPIQlTih8l3yIiIiKn6ocfIDsbduwgvlFjPrthNR0ntiXCa9l2ZoDH0obw8DM34vdravrSTmUnIiIiIqfK54MpUyAjA/r2BWDXLnjpxU/4ufFgdtV2Nmu5IpbnrhxN9tl+utAFN+4QBi0FRTNcouRbREREQsBaZ4jCg3bsYO/Eidyz8yNmtd8JQIUDlg5729HloSvoT38l4GFANd8iIiIioZA78bYWxo6lyvLljM/uzBOb+lNxv+VABcMP9Rcy8fE3SU5MCl2sEhJhmXxrkh0REREJuexsKFPGed2xI4MefI77kqbSbHEsAPM77KXrl22Y8MXHAFjCsxpB8lLZiYiIiEhhWrECGjaE6GgA5v7u538TbmZi/M9kRxvcPsuVi9sQP7Qn8VHxtKQlBvM3B5XiRDXfKPkWERGRYsrng+HDmbF9M080nc7mMwMA1F/nJv7cK/jHeffSghYhDlLyQzXfIiIiIsXV3LmwYwddjYeZtV6h++9NcPktGxv7mbjtG8YNfzvUEUohUvItIiIiUpQ6dYJ+/aB+fcr07s3w+2Zw+aTBVEmEjDKGd5tN5PKnm7N10yZ8+MgmO9QRSwFS2YmIiIhIKOQaljArC2ZO2cDbC65ifvsUAKrstfS2fah85+n0pCdncEYoo5XjUNmJiIiISHGXa1jC6Gi4LLCc75K6MHDiWZRNs+ytYngvbjwzBn/E5NTJGg0lTCj5FhEREQk1nw/WrgXgqcYX8NkZE2i0KgrrMszvuIcPxwxn2uRJIQ5SCoLKTkRERESKA78fZsyApk0J1K7L1Cle3vvyOuZfNg+fxxCZY+mz8nxeGfo//nD/QX3qE0FEqKMWNNQgoORbRERESr6EBJjz5qP8u9an7KzjLGu2Ipa2V1xGg1ZNuJZrqUrV0AYpqvkWERERCQc1k1fTe+8BZizswfmz4gBY3TKDb5ePZ84r03DjDnGEkl9hmXxrenkREREJC2eeCR06ULl8OcY/MZM75t1Fxf2WAxUMPzScz51PXkzi7t2hjlLyQWUnIiIiIsXdvn1QuTJeL7z3zirGJ/VmdRunuqHGLsOQSs/Rql8ndrObTnRSi3gRU803Sr5FREQkfGUtXMbQUffx2eWbyI42uH2W9gvq0fJfXWkQ1ZBbuAWD+fsDSYFQzbeIiIhIuPL5iB4/lpdimvPx5As5Y6MLf4RhTsdt/DjyY5gZUOJdjCn5FhERESlJIiJgwACoVo0L7xnI5FvW0GFqM1x+y8bGfp7e/SRDn78Xv98PgBdviAOW3FR2IiIiIlISeb1OIm4MKSnw9NC3md5sGInVndVtl1TgtZu/YHL9abSlLZ3prFrwQqKab5R8i4iISOmzY9s27vngCua1TQIgLskSn9mJM+5rzvVcT2MahzjC8KSabxEREZFSqM5ppzHp2eU8sO46yqZZkuIMU2v9xqLHJlP9QLVQhyco+RYREREJO0MeHcGT6V/ScGUk1mWYd+5Oun3YkqnffwNAKqkkkBDiKEsnlZ2IiIiIhKl1a70Mf+86pp87D6/HEJltuXZVF9o+dQWbIzbRmc5cwAUaHeUUqexERERERGjcxMOHr33N267XqL3dRU6UYWyb2fznhaEkzk0imWQl3kVMybeIiIhImLv6mn7M6LeUC+bWBWB9y2ymbhjP2lfnhTiy0kfJt4iIiEgpULlKHJ88M5cbZt1LpWRLSnnD6w3+R68hbUjcvRuLZTKT2c3uUIca1lTzLSIiIlLK/PTjGp6fcw3Lzk4BoGYCXBc5gJzb/biNi7701bCE+aCabxERERE5pgu7NWXqkyu5fVkPojMtCTXhzYrvMO/hKfj3xnA6p4c6xLCl5FtERESkFHK73bw4dAwfVRnDGRvd+N2GxefvYNp/32ThrDmhDi9shWXybYy5EhgV6jhEREREirsLu13ClFtXc/7M5rj8lo2NfNy460aeen4Afr8/1OGFHdV8i4iIiAgAn3z8Li9lPcuf1Z3hB1svqUC/uhO56ZaGeDwhDq4YU823iIiIiOTbzbcM4IfL5tNhYRUAlrQ+wIvmAu4e8DIZGSEOLkwo+RYRERGRQ2rVqcO3zy3jgbXXUzbVsi8Ovrvqde7893kcOLA/1OGVeEq+RUREROQIQx57hfGNvqHxqigAfmy/ma4ftWDypK9CHFnJpuRbRERERI6qbXw8M/9vHdct6ojHa9lWz3JX5v38c2hfdcY8SUq+RUREROSYPB4Pbz47gXciRlBnm4ucKMNnbX+l64tNSdyt2TDzS8m3iIiIiPytq3r2ZcaNy7lw3mkARPoiiKtaNcRRlTxKvkVERETkhFSqXIkvnv+dfyU8wJt9vsTtdoc6pBJH43yLiIiIiJwCjfMtIiIiIlIMKfkWERERESkiSr5FRERERIqIkm8RERERkSKi5FtEREREpIgo+RYRERERKSJKvkVEREREioiSbxERERGRIqLkW0RERESkiCj5FhEREREpIkq+RURERESKiJJvEREREZEiouRbRERERKSIRIQ6gGMxxvQELgeqAW9Za6cZYzoDN+LE3cxae24oYxQRERERyY8ibfk2xowxxiQaY1b+Zfklxph1xpg/jDGDAay131hr/wHcBvQNLpttrR0AfAd8VJSxi4iIiIicqqIuO/kQuCT3AmOMG3gLuBRoBlxvjGmWa5MhwfW53QB8VnhhioiIiIgUvCItO7HW/mKMOf0vi+OBP6y1mwCMMZ8DVxtj1gAvAFOstYsPbmyMOQ04YK1NOdo5jDF3AXcR/IdFampqQV+GiIiIiMgh+ck3i0PNd21ge673O4D2wECgG1DBGNPAWvtucP0dwH+PdTBr7XvAe8aYmsCu2rVrF07UIiIiIiJ5lQWOm4kXh+TbHGWZtdaOAkYdZcXTJ3jc3UAtIA3YDJxx0hE6cTxQyPuc6PYnst0s4Px8nDscnOrfuCCdzOcllOfQ8xHeiuLzmB+F/awW9PWe6vH0fBRvxen5KGnfHXBqz/PJxpKf/Qpr22Mpi5N/HldxSL53AHVzva8D7DrVg1prLZAAYIxJttaedP2JMear/O6f331OdPsT2c4YEziV6y2JTvVvXJBO5vMSynPo+QhvRfF5zI/CflYL+npP9Xh6Poq34vR8lLTvjuDxTvp5PtlY8rNfYW17HCd2LidHLTrBmu/vrLUtgu8jgPVAV2AnsAC4wVq7qgDPudBae05BHa+4K23XC6XzmgtKabt3pe16ixvd/+JNfx/JD31eTk5RDzX4GfA70NgYs8MYc4e11gfcD/wArAHGFWTiHfReAR+vuCtt1wul85oLSmm7d6Xteosb3f/iTX8fyQ99Xk5Ckbd8i4iIiIiUVppeXkRERESkiIR98m2M2WKMWWGMWWqMWRjqeAra0WYNNcZUNsZMN8ZsCP6uFMoYC5Ixpq4x5idjzBpjzCpjzD+Dy8P2mgva0Z6JcLp/+XkmjGNUcHbd5caYNqGLvOQzxkQbY+YbY5YFn89/BZefYYyZF7z/XxhjIoPLo4Lv/wiuPz2U8YergnomjDG3BrffYIy5NRTXIoUvP98R+rycnLBPvoMutNa2CtNOAR/yl1lDgcHADGttQ2BG8H248AEPW2ubAh2A+4wzI2o4X3Nh+OszEU7370NO/Jm4FGgY/LkLeKeIYgxX2cBF1tqzgVbAJcaYDsCLwIjg/U/Gma+B4O9ka20DYERwOyl4H3KKz4QxpjLwNM48HPHA0yX5H+nyt070O0Kfl5NQWpLvsGWt/QXY95fFVwMfBV9/BPQs0qAKkbU24eCMp8EhgdbgTNQUttdcRMLm/uXzmbga+Ng65gIVjTNBl5yE4H1MC771BH8scBEwIbj8r/f/4N9lAtDVGHO0uR/kFBTQM9EDmG6t3WetTQamc2RCL+FLn5cCVBqSbwtMM8YsMs7U86VBdWttAjjJKlAtxPEUiuD/om4NzKOUXHMBOdozEe7371jXd7QZdjUt7ikwxriNMUuBRJwv3I3A/uDIVpD3Hh+6/8H1B4C4oo241MrvM6FnpfTIz3eEPi8noThMslPYOllrdxljqgHTjTFrg60AUoIZY8oCXwKDrLUpaizLlyOeiVAHFEJHnWG3yKMII9ZaP9DKGFMR+BpoerTNgr91/4ufY/1N9LcqPfLzHaHPy0kI+5Zva+2u4O9EnC+C+NBGVCT+PPi/zoO/E0McT4EyxnhwEu9PrbVfBReH9TUXpGM8E+F+/451fYUyw66AtXY/8DNO34yKxplQDfLe40P3P7i+AkeWR0jhyO8zoWellMjnd4Q+LychrJNvY0wZY0y5g6+B7sDK4+8VFr4FDvYsvhWYGMJYClSwHnQ0sMZa+1quVWF7zQXpOM9EuN+/Y13ft8AtwR77HYADB//XquSfMaZqsMUbY0wM0A2nX8ZPwLXBzf56/w/+Xa4FZlpNPlFU8vtM/AB0N8ZUCnac6x5cJmHkJL4j9Hk5CWE9yY4x5kycf7WBU2Iz1lo7LIQhFTjjzBp6AVAF+BOnd/E3wDjgNGAb0MdaGxatScaY84DZwAogEFz8BE7dd1hec0E61jNhjIkjTO5ffp6J4D/m3sTpCJQB3G6tDbshSYuKMeYsnM5YbpzGnXHW2meDn7vPgcrAEuAma222MSYa+ASn78Y+oJ+1dlNoog9fBfVMGGP64/z3FmCYtfa/RXkdUvjy+x2hz8vJCevkW0RERESkOAnrshMRERERkeJEybeIiIiISBFR8i0iIiIiUkSUfIuIiIiIFBEl3yIiIiIiRUTJt4hICWCMiTPGLA3+7DbG7Mz1fk4hnO82Y8weY8wHwfcXGGOsMeaOXNu0Di57JJ/Hfjl4DfnaT0QkHJSG6eVFREo8a20S0ArAGPMMkGatfaWQT/uFtfb+XO9XAH1xJroC6Acsy88BjTFua+3/GWPSCyhGEZESRS3fIiIlnDEmLfj7AmPMLGPMOGPMemPMC8aYG40x840xK4wx9YPbVTXGfGmMWRD86XSCp9oGRBtjqgcn17gEmBI8Zn1jzOJcMTU0xiwKvt5ijBlqjPkV6FOAly4iUuKo5VtEJLycDTTFmTFyE/CBtTbeGPNPYCAwCBgJjLDW/mqMOQ1n2uemJ3j8CTgJ9BJgMZANYK3daIw5YIxpZa1dCtwOfJhrvyxr7XmnfHUiIiWckm8RkfCywFqbAGCM2QhMCy5fAVwYfN0NaOY0XgNQ3hhTzlqbegLHHwd8ATQBPgPOzbXuA+B2Y8xDOOUp8bnWfXES1yIiEnZUdiIiEl6yc70O5Hof4HCDiwvoaK1tFfypfYKJN9ba3YAXuBiY8ZfVXwKXAlcAi4J16gepxltEBCXfIiKl0TTgUEdKY0yrfO4/FHjMWuvPvdBam4VTwvIO8N9TDVJEJBwp+RYRKX0eAM4xxiw3xqwGBuRnZ2vtHGvtN8dY/SlgOVzuIiIiuRhrbahjEBGRYsYYcxtwzl+GGjyR/R4BKlhrn/qb7Z6haIZLFBEpVtTyLSIiR5MJXHpwkp0TYYz5GrgFZzSV4233MnATqgMXkVJILd8iIiIiIkVELd8iIiIiIkVEybeIiIiISBFR8i0iIiIiUkSUfIuIiIiIFBEl3yIiIiIiRUTJt4iIiIhIEfl/Mr7uAMR79osAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 864x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(figsize=(12,8))\n",
    "ax.set_title('$L_x$ evolution evolutionary tracks with Jackson12 sample')\n",
    "\n",
    "# plot Tu15 tracks (for a Sun-like star!)\n",
    "ax.plot(blueTu15[\"time\"], blueTu15[\"Lx\"], marker=\"None\", linestyle=\":\", color=\"blue\", linewidth=2.5, alpha=0.6, label=\"__nolabel__\")#, label=\"fast rot. (solar model)\")\n",
    "ax.plot(redTu15[\"time\"], redTu15[\"Lx\"], marker=\"None\", linestyle=\":\", color=\"red\", linewidth=2.5, alpha=0.6, label=\"__nolabel__\")#, label=\"slow rot. (solar model)\")\n",
    "ax.plot(greenTu15[\"time\"], greenTu15[\"Lx\"], marker=\"None\", linestyle=\":\", color=\"lime\", linewidth=2.5, alpha=0.5, label=\"__nolabel__\")#, label=\"interm. rot. (solar model)\")\n",
    "ax.plot(jack12[\"age\"]/1e6, 10**jack12[\"logLx_cgs\"], ls=\"None\", marker=\"o\", color=\"grey\", mec=\"k\", alpha=0.3, zorder=1, label=\"cluster stars from \\nJackson et al. (2012)\")\n",
    "\n",
    "# plot approximated tracks\n",
    "step_size, t_track_start, t_track_end = 1., star_V1298Tau[\"age\"], 5000. # Myr\n",
    "t_arr = np.arange(t_track_start, t_track_end+step_size, step_size)\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track1) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:royal blue\", ls=\"-\", zorder=2, label=\"fast activity track\", lw=2.2)\n",
    "# 1 sigma errorbars on Lx at 23 Myr\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track1_lower) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:royal blue\", ls=\":\", zorder=2, label=\"__nolabel__\", lw=1)\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track1_upper) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:royal blue\", ls=\":\", zorder=2, label=\"__nolabel__\", lw=1)\n",
    "#####\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track2) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:green\", zorder=3, lw=2.2, alpha=1., label=\"medium activity track\")\n",
    "# 1 sigma errorbars on Lx at 23 Myr\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track2_lower) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:green\", ls=\":\", zorder=2, label=\"__nolabel__\", lw=1)\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track2_upper) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:green\", ls=\":\", zorder=2, label=\"__nolabel__\", lw=1)\n",
    "#####\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track3) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:red\", zorder=2, label=\"low activity track\", alpha=0.9, ls=\"-\", lw=2.2)\n",
    "# 1 sigma errorbars on Lx at 23 Myr\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track3_lower) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:red\", ls=\":\", zorder=2, label=\"__nolabel__\", lw=1)\n",
    "Lx_arr = np.array([Lx_evo(t=t_i, track_dict=track3_upper) for t_i in t_arr])\n",
    "ax.plot(t_arr, Lx_arr, color=\"xkcd:red\", ls=\":\", zorder=2, label=\"__nolabel__\", lw=1)\n",
    "\n",
    "ax.loglog()\n",
    "ax.set_xlabel(\"Time [Myr]\")\n",
    "ax.set_ylabel(\"L$_\\mathrm{x}$ [erg/s]\")\n",
    "ax.set_xticks([5, 10, 20, 50, 100, 300, 1000, 5000])\n",
    "ax.set_yticks([10**27., 10**28., 10**29., 10**30., 10**31.])\n",
    "ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:.0f}'))\n",
    "ax.set_xlim(left=4.9, right=11000)\n",
    "ylim = ax.get_ylim()\n",
    "ax.set_ylim(abs(ylim[0]), ylim[1])\n",
    "ax.legend(loc=\"best\", fontsize=12)\n",
    "#plt.savefig(\"./tracks_v1298Tau.png\", dpi=300)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Create planets for evolution calculation\n",
    "\n",
    "The scenarios:\n",
    "* \"fluffy\" planets with a 5 and 10 M$_\\oplus$ core, and H/He envelope to match the current observed radius\n",
    "* \"dense\" planets which follow the empirical mass-radius relation for more mature planets\n",
    "\n",
    "To create a planet object (either from the LoFo14 class or the Ot20 class), a dictionary with the star & planet parameters needs to be passed when initializing the class object.\n",
    "\n",
    "*NOTE*: there are four classes: planet_LoFo14_PAPER, planet_LoFo14, planet_Ot20_PAPER, planet_Ot20 <br>\n",
    "In the paper we originally used a fixed step size for the foward-integration, but later added a variable step-size option, which is much faster.\n",
    "For completeness, both versions are being shown below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create planet objects using either LoFO14 or Ot20 results:\n",
    "# ----------------------------------------------------------\n",
    "\n",
    "# for fluffy LoFo14 planet, a core mass needs to be specified, in addition to the metallicity (solar or enhanced)\n",
    "# based on the specified core mass and the observed radius, one can estimate the current envelope mass fraction \n",
    "# needed to produce a planet of current size -> the envelope together with the core sets the starting mass of the planets\n",
    "# for the dense Ot20 planets, the current mass is estimated based on the observed mass-radius relation in Otegi et al. (2020)\n",
    "\n",
    "###############################################################################################\n",
    "Mcore5, Mcore10, metallicity = 5., 10., \"solarZ\"\n",
    "# 'fluffy' LoFo14 planets with 5 M_earth core\n",
    "planet_c = {\"core_mass\": Mcore5, \"radius\": R_c, \"distance\": a_c, \"metallicity\": metallicity}\n",
    "planet_d = {\"core_mass\": Mcore5, \"radius\": R_d, \"distance\": a_d, \"metallicity\": metallicity}\n",
    "planet_b = {\"core_mass\": Mcore5, \"radius\": R_b, \"distance\": a_b, \"metallicity\": metallicity}\n",
    "planet_e = {\"core_mass\": Mcore5, \"radius\": R_e, \"distance\": a_e, \"metallicity\": metallicity}\n",
    "\n",
    "# fixed step size\n",
    "pl_c_5_PAPER = planet_LoFo14_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_c)\n",
    "pl_d_5_PAPER = planet_LoFo14_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_d)\n",
    "pl_b_5_PAPER = planet_LoFo14_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_b)\n",
    "pl_e_5_PAPER = planet_LoFo14_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_e)\n",
    "planet_list_Mcore5_PAPER = [pl_c_5_PAPER, pl_d_5_PAPER, pl_b_5_PAPER, pl_e_5_PAPER]\n",
    "\n",
    "# variable step size\n",
    "pl_c_5 = planet_LoFo14(star_dictionary=star_V1298Tau, planet_dict=planet_c)\n",
    "pl_d_5 = planet_LoFo14(star_dictionary=star_V1298Tau, planet_dict=planet_d)\n",
    "pl_b_5 = planet_LoFo14(star_dictionary=star_V1298Tau, planet_dict=planet_b)\n",
    "pl_e_5 = planet_LoFo14(star_dictionary=star_V1298Tau, planet_dict=planet_e)\n",
    "planet_list_Mcore5 = [pl_c_5, pl_d_5, pl_b_5, pl_e_5]\n",
    "\n",
    "###############################################################################################\n",
    "# 'fluffy' LoFo14 planets with 10 M_earth core\n",
    "planet_c = {\"core_mass\": Mcore10, \"radius\": R_c, \"distance\": a_c, \"metallicity\": metallicity}\n",
    "planet_d = {\"core_mass\": Mcore10, \"radius\": R_d, \"distance\": a_d, \"metallicity\": metallicity}\n",
    "planet_b = {\"core_mass\": Mcore10, \"radius\": R_b, \"distance\": a_b, \"metallicity\": metallicity}\n",
    "planet_e = {\"core_mass\": Mcore10, \"radius\": R_e, \"distance\": a_e, \"metallicity\": metallicity}\n",
    "\n",
    "# fixed step size\n",
    "pl_c_10_PAPER = planet_LoFo14_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_c)\n",
    "pl_d_10_PAPER = planet_LoFo14_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_d)\n",
    "pl_b_10_PAPER = planet_LoFo14_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_b)\n",
    "pl_e_10_PAPER = planet_LoFo14_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_e)\n",
    "planet_list_Mcore10_PAPER = [pl_c_10_PAPER, pl_d_10_PAPER, pl_b_10_PAPER, pl_e_10_PAPER]\n",
    "\n",
    "# variable step size\n",
    "pl_c_10 = planet_LoFo14(star_dictionary=star_V1298Tau, planet_dict=planet_c)\n",
    "pl_d_10 = planet_LoFo14(star_dictionary=star_V1298Tau, planet_dict=planet_d)\n",
    "pl_b_10 = planet_LoFo14(star_dictionary=star_V1298Tau, planet_dict=planet_b)\n",
    "pl_e_10 = planet_LoFo14(star_dictionary=star_V1298Tau, planet_dict=planet_e)\n",
    "planet_list_Mcore10 = [pl_c_10, pl_d_10, pl_b_10, pl_e_10]\n",
    "\n",
    "###############################################################################################\n",
    "# 'high-density' Ot20 planets\n",
    "planet_c = {\"radius\": R_c, \"distance\": a_c}\n",
    "planet_d = {\"radius\": R_d, \"distance\": a_d}\n",
    "planet_b = {\"radius\": R_b, \"distance\": a_b}\n",
    "planet_e = {\"radius\": R_e, \"distance\": a_e}\n",
    "\n",
    "# fixed step size\n",
    "pl_c_Ot_PAPER = planet_Ot20_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_c)\n",
    "pl_d_Ot_PAPER = planet_Ot20_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_d)\n",
    "pl_b_Ot_PAPER = planet_Ot20_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_b)\n",
    "pl_e_Ot_PAPER = planet_Ot20_PAPER(star_dictionary=star_V1298Tau, planet_dict=planet_e)\n",
    "planet_list_Ot_PAPER = [pl_c_Ot_PAPER, pl_d_Ot_PAPER, pl_b_Ot_PAPER, pl_e_Ot_PAPER]\n",
    "\n",
    "# variable step size\n",
    "pl_c_Ot = planet_Ot20(star_dictionary=star_V1298Tau, planet_dict=planet_c)\n",
    "pl_d_Ot = planet_Ot20(star_dictionary=star_V1298Tau, planet_dict=planet_d)\n",
    "pl_b_Ot = planet_Ot20(star_dictionary=star_V1298Tau, planet_dict=planet_b)\n",
    "pl_e_Ot = planet_Ot20(star_dictionary=star_V1298Tau, planet_dict=planet_e)\n",
    "planet_list_Ot = [pl_c_Ot, pl_d_Ot, pl_b_Ot, pl_e_Ot]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Evolve planets using a fixed step size (this was used in the paper, but is very slow!)\n",
    "\n",
    "*****\n",
    "**TO DO**: <br>\n",
    "Run the cells below to start the evolution calculation (or immediately read in the results if already available).  <br>\n",
    "**Some of the calculation results are already available in separate folders. If you want to redo them, delete the results-folders. Just remember that this will take some time with the fixed step-size code.** <br>\n",
    "For each planet scenario (\"fluffy\" and \"dense\"), the planets are evolved along three tracks (high, medium and low activity). <br>\n",
    "The output will be four arrays per track: t1_XXX, M1_XXX, R1_XXX, Lx1_XXX (time, mass, radius, Lx evolution). <br>\n",
    "The high activity track is labeled in the variable name with a \"1\", the medium one with \"2\", and the low activity track with a \"3\".\n",
    "\n",
    "Some info: <br>\n",
    "* *create_planet_chunks* - this function creates the right directory structure for saving the results; for each planet in the list of planets which is passed into this function, a folder is created where the results are saved. The function returns the correct path for saving the results, and a a new list of planets (`list_planets` is divided into chunks to avoid problems with multiprocessing; only important if `list_planets` is very long -> can be ignored here!). <br> **NOTE**: the folders created for each planet are **numbered**! \n",
    "So if `list_planets` contains: [planet_c, planet_d, planet_b, planet_e], then the corresponding folders will be [planet_1, planet_2, planet_3, planet_4].\n",
    "\n",
    "* Set the name of the folder for saving the results of one scenario, the evaporation efficiency ($\\epsilon$), the initial step size and the end time of the simulation\n",
    "\n",
    "* Initiate the multiprocessing & call *evolve_ensamble*, which takes care of the rest. This funtion evolves all the planets in `list_planets` (which, if long, is chunked up into smaller pieces -> `planet_chunks`) along all the evolutionary tracks provided in `evo_track_dict_list`; decide here if you want the $\\beta$ and $K$ parameters to be turned on or set to 1.\n",
    "\n",
    "* The results are read in by the function `read_in_PLATYPOS_results`, which returns three things:\n",
    "    1. Dictionary with planet names as keys (so planet_1, planet_2,...) and a corresponding dataframe as value, which has the time, radius, mass and Lx evolution for each track stored (i.e. (4 * number of tracks) columns)\n",
    "    1. Dataframe with all the initial planet parameters\n",
    "    1. Dictionary with planet names as keys, and the parameters of the evolutionary tracks as values <br>\n",
    "    track '1' = intermediate activity track ('track_23.0_23.0_5000.0_1.3e+30_0.0_0.0') <br>\n",
    "    track '2' = low activity track ('track_23.0_23.0_5000.0_1.3e+30_20.0_16.0') <br>\n",
    "    track '3' = high activity track ('track_23.0_240.0_5000.0_1.3e+30_0.0_0.0') <br>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# set the paths\n",
    "path_up_to_playpos = os.getcwd().split(\"platypos\")[0]\n",
    "curr_path = path_up_to_playpos+'platypos/example_V1298Tau_github_copy/'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'/media/laura/SSD2lin/PhD/work/gitlab/platypos/example_V1298Tau_github_copy/'"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "curr_path"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## LoFo14 planets with M$_{core}\\,=\\,5\\,$M$_\\oplus$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Folder results_LoFo14_Mcore5_PAPER/ exists.\n",
      "That took 0.00045972267786661785 minutes\n",
      "CPU times: user 11.9 ms, sys: 12 ms, total: 23.9 ms\n",
      "Wall time: 28.9 ms\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "\n",
    "folder_name = \"results_LoFo14_Mcore5_PAPER/\" \n",
    "# chunk_size...\n",
    "path_save, planet_chunks = create_planet_chunks(curr_path, folder_name=folder_name, list_planets=planet_list_Mcore5_PAPER, chunk_size=4)\n",
    "eps, init_step, t_final = 0.1, 0.1, 5000.\n",
    "\n",
    "# this is where the mulit-processing happens\n",
    "if __name__ == \"__main__\":\n",
    "    # evolve the ensamble (multi-threading)\n",
    "    evolve_ensamble(planet_chunks, t_final, initial_step_size=init_step, epsilon=eps, \n",
    "                    K_on=\"yes\", beta_on=\"yes\", evo_track_dict_list=list_tracks, path_save=path_save)\n",
    "    \n",
    "# read in the results as a dataframe\n",
    "#planets_LoFo14_Mcore5_dict, planets_LoFo14_Mcore5_init_df, tracks_LoFo14_Mcore5_dict = read_in_PLATYPOS_results(path_to_results=\"./results_LoFo14_Mcore5_PAPER/\", N_tracks=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## LoFo14 planets with M$_{core}\\,=\\,10\\,$M$_\\oplus$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Folder results_LoFo14_Mcore10_PAPER/ exists.\n",
      "That took 0.00047680139541625974 minutes\n",
      "CPU times: user 8.72 ms, sys: 15.7 ms, total: 24.5 ms\n",
      "Wall time: 30.9 ms\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "folder_name = \"results_LoFo14_Mcore10_PAPER/\"\n",
    "path_save, planet_chunks = create_planet_chunks(curr_path, folder_name=folder_name, list_planets=planet_list_Mcore10_PAPER, chunk_size=4)\n",
    "eps, init_step, t_final = 0.1, 0.1, 5000.\n",
    "\n",
    "# this is where the mulit-processing happens\n",
    "if __name__ == \"__main__\":\n",
    "    evolve_ensamble(planet_chunks, t_final, initial_step_size=init_step, epsilon=eps, \n",
    "                    K_on=\"yes\", beta_on=\"yes\", evo_track_dict_list=list_tracks, path_save=path_save)\n",
    "    \n",
    "\n",
    "# read in the results as a dataframe\n",
    "#planets_LoFo14_Mcore10_dict, planets_LoFo14_Mcore10_init_df, tracks_LoFo14_Mcore10_dict = read_in_PLATYPOS_results(path_to_results=\"./results_LoFo14_Mcore10_PAPER/\", N_tracks=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ot20 planets "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Planet:  planet_1_track_23.0_240.0_5000.0_1.3e+30_0.0_0.0.txt\n",
      "Start evolving.\n",
      "Planet:  planet_4_track_23.0_240.0_5000.0_1.3e+30_0.0_0.0.txt\n",
      "Planet:  planet_3_track_23.0_240.0_5000.0_1.3e+30_0.0_0.0.txt\n",
      "Start evolving.\n",
      "Start evolving.\n",
      "Planet:  planet_2_track_23.0_240.0_5000.0_1.3e+30_0.0_0.0.txt\n",
      "Start evolving.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Process Process-10:\n",
      "Process Process-9:\n",
      "Process Process-11:\n",
      "Process Process-12:\n",
      "Traceback (most recent call last):\n",
      "Traceback (most recent call last):\n",
      "Traceback (most recent call last):\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/multiprocessing/process.py\", line 297, in _bootstrap\n",
      "    self.run()\n",
      "Traceback (most recent call last):\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/multiprocessing/process.py\", line 99, in run\n",
      "    self._target(*self._args, **self._kwargs)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/multiprocessing/process.py\", line 297, in _bootstrap\n",
      "    self.run()\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/multiprocessing/process.py\", line 99, in run\n",
      "    self._target(*self._args, **self._kwargs)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/multiprocessing/process.py\", line 297, in _bootstrap\n",
      "    self.run()\n",
      "  File \"../population_evolution/evolve_planet.py\", line 71, in evolve_one_planet\n",
      "    path_for_saving=path_for_saving, planet_folder_id=folder)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/multiprocessing/process.py\", line 297, in _bootstrap\n",
      "    self.run()\n",
      "  File \"../population_evolution/evolve_planet.py\", line 71, in evolve_one_planet\n",
      "    path_for_saving=path_for_saving, planet_folder_id=folder)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/multiprocessing/process.py\", line 99, in run\n",
      "    self._target(*self._args, **self._kwargs)\n",
      "  File \"../platypos_package/Mass_evolution_function.py\", line 706, in mass_planet_RK4_forward_Ot14_PAPER\n",
      "    Mdot4 = mass_loss_rate_forward_Ot20(times[i]+dt, epsilon, K_on, beta_on, planet_object, R_05k3, track_dict)\n",
      "  File \"../platypos_package/Planet_class_Ot20_PAPER.py\", line 155, in evolve_forward\n",
      "    track_dict=evo_track_dict)\n",
      "  File \"../population_evolution/evolve_planet.py\", line 71, in evolve_one_planet\n",
      "    path_for_saving=path_for_saving, planet_folder_id=folder)\n",
      "  File \"../platypos_package/Planet_class_Ot20_PAPER.py\", line 155, in evolve_forward\n",
      "    track_dict=evo_track_dict)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/multiprocessing/process.py\", line 99, in run\n",
      "    self._target(*self._args, **self._kwargs)\n",
      "  File \"../population_evolution/evolve_planet.py\", line 71, in evolve_one_planet\n",
      "    path_for_saving=path_for_saving, planet_folder_id=folder)\n",
      "  File \"../platypos_package/Mass_evolution_function.py\", line 691, in mass_planet_RK4_forward_Ot14_PAPER\n",
      "    Mdot1 = mass_loss_rate_forward_Ot20(times[i], epsilon, K_on, beta_on, planet_object, R, track_dict) # mass M, radius R\n",
      "  File \"../platypos_package/Planet_class_Ot20_PAPER.py\", line 155, in evolve_forward\n",
      "    track_dict=evo_track_dict)\n",
      "  File \"../platypos_package/Mass_loss_rate_function.py\", line 87, in mass_loss_rate_forward_Ot20\n",
      "    rho_p = rho = plmoOt20.density_planet(M_p, radius_at_t) # initial approx. density\n",
      "  File \"../platypos_package/Mass_evolution_function.py\", line 691, in mass_planet_RK4_forward_Ot14_PAPER\n",
      "    Mdot1 = mass_loss_rate_forward_Ot20(times[i], epsilon, K_on, beta_on, planet_object, R, track_dict) # mass M, radius R\n",
      "  File \"../platypos_package/Planet_model_Ot20.py\", line 74, in density_planet\n",
      "    rho = (M_p*const.M_earth.cgs/(4./3*np.pi*(R_p*const.R_earth.cgs)**3)).cgs\n",
      "  File \"../platypos_package/Mass_loss_rate_function.py\", line 87, in mass_loss_rate_forward_Ot20\n",
      "    rho_p = rho = plmoOt20.density_planet(M_p, radius_at_t) # initial approx. density\n",
      "  File \"../platypos_package/Mass_loss_rate_function.py\", line 87, in mass_loss_rate_forward_Ot20\n",
      "    rho_p = rho = plmoOt20.density_planet(M_p, radius_at_t) # initial approx. density\n",
      "  File \"../platypos_package/Planet_model_Ot20.py\", line 74, in density_planet\n",
      "    rho = (M_p*const.M_earth.cgs/(4./3*np.pi*(R_p*const.R_earth.cgs)**3)).cgs\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/quantity.py\", line 768, in cgs\n",
      "    cgs_unit = self.unit.cgs\n",
      "  File \"../platypos_package/Planet_class_Ot20_PAPER.py\", line 155, in evolve_forward\n",
      "    track_dict=evo_track_dict)\n",
      "  File \"../platypos_package/Planet_model_Ot20.py\", line 74, in density_planet\n",
      "    rho = (M_p*const.M_earth.cgs/(4./3*np.pi*(R_p*const.R_earth.cgs)**3)).cgs\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/quantity.py\", line 768, in cgs\n",
      "    cgs_unit = self.unit.cgs\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/utils/decorators.py\", line 744, in __get__\n",
      "    val = self.fget(obj)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/quantity.py\", line 768, in cgs\n",
      "    cgs_unit = self.unit.cgs\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/utils/decorators.py\", line 744, in __get__\n",
      "    val = self.fget(obj)\n",
      "  File \"../platypos_package/Mass_evolution_function.py\", line 696, in mass_planet_RK4_forward_Ot14_PAPER\n",
      "    Mdot2 = mass_loss_rate_forward_Ot20(times[i]+0.5*dt, epsilon, K_on, beta_on, planet_object, R_05k1, track_dict)\n",
      "  File \"../platypos_package/Mass_loss_rate_function.py\", line 87, in mass_loss_rate_forward_Ot20\n",
      "    rho_p = rho = plmoOt20.density_planet(M_p, radius_at_t) # initial approx. density\n",
      "  File \"../platypos_package/Planet_model_Ot20.py\", line 74, in density_planet\n",
      "    rho = (M_p*const.M_earth.cgs/(4./3*np.pi*(R_p*const.R_earth.cgs)**3)).cgs\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1331, in cgs\n",
      "    return self.to_system(cgs)[0]\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1331, in cgs\n",
      "    return self.to_system(cgs)[0]\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/quantity.py\", line 768, in cgs\n",
      "    cgs_unit = self.unit.cgs\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1331, in cgs\n",
      "    return self.to_system(cgs)[0]\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/utils/decorators.py\", line 744, in __get__\n",
      "    val = self.fget(obj)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1312, in to_system\n",
      "    composed = x.compose(units=system)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/utils/decorators.py\", line 744, in __get__\n",
      "    val = self.fget(obj)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1269, in compose\n",
      "    max_depth=max_depth, depth=0, cached_results={}))\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1312, in to_system\n",
      "    composed = x.compose(units=system)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1107, in _compose\n",
      "    cached_results=cached_results)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1269, in compose\n",
      "    max_depth=max_depth, depth=0, cached_results={}))\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1082, in _compose\n",
      "    factored = composed * tunit\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1331, in cgs\n",
      "    return self.to_system(cgs)[0]\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1312, in to_system\n",
      "    composed = x.compose(units=system)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 694, in __mul__\n",
      "    return CompositeUnit(1, [self, m], [1, 1], _error_check=False)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1312, in to_system\n",
      "    composed = x.compose(units=system)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2052, in __init__\n",
      "    bases=decompose_bases)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2119, in _expand_and_gather\n",
      "    new_parts = [x for x in new_parts.items() if x[1] != 0]\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1269, in compose\n",
      "    max_depth=max_depth, depth=0, cached_results={}))\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "\u001b[0;32m<timed exec>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n",
      "\u001b[0;32m/media/laura/SSD2lin/PhD/work/gitlab/platypos/population_evolution/evolve_planet.py\u001b[0m in \u001b[0;36mevolve_ensamble\u001b[0;34m(planets_chunks, t_final, initial_step_size, epsilon, K_on, beta_on, evo_track_dict_list, path_save)\u001b[0m\n\u001b[1;32m    220\u001b[0m             \u001b[0;31m# \"join() says that the code in __main__ must wait until all our tasks are complete before continuing!\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    221\u001b[0m             \u001b[0;31m# Make sure Python waits for the process to terminate and then exits the completed processes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 222\u001b[0;31m             \u001b[0mprocess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    223\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    224\u001b[0m         \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mstarttime\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m60\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda3/lib/python3.7/multiprocessing/process.py\u001b[0m in \u001b[0;36mjoin\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m    138\u001b[0m         \u001b[0;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_pid\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetpid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'can only join a child process'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    139\u001b[0m         \u001b[0;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_popen\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'can only join a started process'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m         \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_popen\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    141\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    142\u001b[0m             \u001b[0m_children\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdiscard\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda3/lib/python3.7/multiprocessing/popen_fork.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m     46\u001b[0m                     \u001b[0;32mreturn\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     47\u001b[0m             \u001b[0;31m# This shouldn't block if wait() returned successfully.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 48\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpoll\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mWNOHANG\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0.0\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     49\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreturncode\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     50\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda3/lib/python3.7/multiprocessing/popen_fork.py\u001b[0m in \u001b[0;36mpoll\u001b[0;34m(self, flag)\u001b[0m\n\u001b[1;32m     26\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreturncode\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     27\u001b[0m             \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 28\u001b[0;31m                 \u001b[0mpid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwaitpid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mflag\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     29\u001b[0m             \u001b[0;32mexcept\u001b[0m \u001b[0mOSError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     30\u001b[0m                 \u001b[0;31m# Child process not yet created. See #1731717\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2119, in <listcomp>\n",
      "    new_parts = [x for x in new_parts.items() if x[1] != 0]\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1107, in _compose\n",
      "    cached_results=cached_results)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1269, in compose\n",
      "    max_depth=max_depth, depth=0, cached_results={}))\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1107, in _compose\n",
      "    cached_results=cached_results)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1123, in _compose\n",
      "    factored = composed * tunit\n",
      "KeyboardInterrupt\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1082, in _compose\n",
      "    factored = composed * tunit\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 694, in __mul__\n",
      "    return CompositeUnit(1, [self, m], [1, 1], _error_check=False)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 694, in __mul__\n",
      "    return CompositeUnit(1, [self, m], [1, 1], _error_check=False)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1107, in _compose\n",
      "    cached_results=cached_results)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1081, in _compose\n",
      "    composed = (u / tunit_decomposed).decompose()\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 654, in __div__\n",
      "    return CompositeUnit(1, [self, m], [1, -1], _error_check=False)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2052, in __init__\n",
      "    bases=decompose_bases)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2120, in _expand_and_gather\n",
      "    new_parts.sort(key=lambda x: (-x[1], getattr(x[0], 'name', '')))\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2052, in __init__\n",
      "    bases=decompose_bases)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2052, in __init__\n",
      "    bases=decompose_bases)\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2120, in <lambda>\n",
      "    new_parts.sort(key=lambda x: (-x[1], getattr(x[0], 'name', '')))\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2113, in _expand_and_gather\n",
      "    for b_sub, p_sub in zip(b._bases, b._powers):\n",
      "KeyboardInterrupt\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2115, in _expand_and_gather\n",
      "    scale = add_unit(b_sub, a * b, scale)\n",
      "KeyboardInterrupt\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 2097, in add_unit\n",
      "    if unit in new_parts:\n",
      "  File \"/home/laura/anaconda3/lib/python3.7/site-packages/astropy/units/core.py\", line 1958, in __hash__\n",
      "    if self._hash is None:\n",
      "KeyboardInterrupt\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "folder_name = \"results_Ot20_PAPER/\"\n",
    "path_save, planet_chunks = create_planet_chunks(curr_path, folder_name=folder_name, list_planets=planet_list_Ot_PAPER, chunk_size=4)\n",
    "eps, init_step, t_final = 0.1, 1., 5000.\n",
    "\n",
    "# this is where the mulit-processing happens\n",
    "if __name__ == \"__main__\":\n",
    "    evolve_ensamble(planet_chunks, t_final, initial_step_size=init_step, epsilon=eps, \n",
    "                    K_on=\"yes\", beta_on=\"yes\", evo_track_dict_list=list_tracks, path_save=path_save)\n",
    "    \n",
    "# read in the results as a dataframe\n",
    "#planets_Ot_dict, planets_Ot_init_df, tracks_Ot_dict = read_in_PLATYPOS_results(path_to_results=\"./results_Ot20_PAPER/\", N_tracks=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Evolve planets using a variable step size (faster & recommended)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## LoFo14 planets with M$_{core}\\,=\\,5\\,$M$_\\oplus$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Folder results_LoFo14_Mcore5_varstep/ exists.\n",
      "That took 0.00045744578043619793 minutes\n",
      "Total # of planet folders =  4\n",
      "Non-empty folders:  4\n",
      "\n",
      "Total number of planets to analyze:  4\n",
      "CPU times: user 74.8 ms, sys: 27.3 ms, total: 102 ms\n",
      "Wall time: 108 ms\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "folder_name = \"results_LoFo14_Mcore5_varstep/\"\n",
    "path_save, planet_chunks = create_planet_chunks(curr_path, folder_name=folder_name, list_planets=planet_list_Mcore5, chunk_size=4)\n",
    "eps, init_step, t_final = 0.1, 0.1, 5000.\n",
    "\n",
    "# this is where the mulit-processing happens\n",
    "if __name__ == \"__main__\":\n",
    "    evolve_ensamble(planet_chunks, t_final, initial_step_size=init_step, epsilon=eps, \n",
    "                    K_on=\"yes\", beta_on=\"yes\", evo_track_dict_list=list_tracks, path_save=path_save)\n",
    "    \n",
    "# read in the results as a dataframe\n",
    "pl_LoFo14_Mcore5_dict, pl_LoFo14_Mcore5_init_df, tracks_LoFo14_Mcore5_dict = read_in_PLATYPOS_results(path_to_results=\"./results_LoFo14_Mcore5_varstep/\", N_tracks=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# after code update 18.6."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[array([['planet_3',\n",
       "         <Planet_class_LoFo14.planet_LoFo14 object at 0x7f5bbe4167b8>],\n",
       "        ['planet_4',\n",
       "         <Planet_class_LoFo14.planet_LoFo14 object at 0x7f5bbe4167f0>],\n",
       "        ['planet_2',\n",
       "         <Planet_class_LoFo14.planet_LoFo14 object at 0x7f5bbe419748>],\n",
       "        ['planet_1',\n",
       "         <Planet_class_LoFo14.planet_LoFo14 object at 0x7f5bbe419710>]],\n",
       "       dtype=object)]"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "planet_chunks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "5.59"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "planet_list_Mcore5[0].radius"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Folder results_LoFo14_Mcore5_varstep_18June2020/ exists.\n",
      "That took 0.000495290756225586 minutes\n",
      "Total # of planet folders =  4\n",
      "Non-empty folders:  4\n",
      "\n",
      "Total number of planets to analyze:  4\n",
      "CPU times: user 63.2 ms, sys: 40 ms, total: 103 ms\n",
      "Wall time: 109 ms\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "folder_name = \"results_LoFo14_Mcore5_varstep_18June2020/\"\n",
    "path_save, planet_chunks = create_planet_chunks(curr_path, folder_name=folder_name, list_planets=planet_list_Mcore5, chunk_size=4)\n",
    "eps, init_step, t_final = 0.1, 0.1, 5000.\n",
    "\n",
    "# this is where the mulit-processing happens\n",
    "if __name__ == \"__main__\":\n",
    "    evolve_ensamble(planet_chunks, t_final, initial_step_size=init_step, epsilon=eps, \n",
    "                    K_on=\"yes\", beta_on=\"yes\", evo_track_dict_list=list_tracks, path_save=path_save)\n",
    "    \n",
    "# read in the results as a dataframe\n",
    "pl_LoFo14_Mcore5_dict_new, pl_LoFo14_Mcore5_init_df_new, tracks_LoFo14_Mcore5_dict_new = read_in_PLATYPOS_results(path_to_results=\"./results_LoFo14_Mcore5_varstep_18June2020/\", N_tracks=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## LoFo14 planets with M$_{core}\\,=\\,10\\,$M$_\\oplus$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Folder results_LoFo14_Mcore10_varstep/ exists.\n",
      "That took 0.000504453976949056 minutes\n",
      "Total # of planet folders =  4\n",
      "Non-empty folders:  4\n",
      "\n",
      "Total number of planets to analyze:  4\n",
      "CPU times: user 68.7 ms, sys: 20.2 ms, total: 88.9 ms\n",
      "Wall time: 92.8 ms\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "folder_name = \"results_LoFo14_Mcore10_varstep/\"\n",
    "path_save, planet_chunks = create_planet_chunks(curr_path, folder_name=folder_name, list_planets=planet_list_Mcore10, chunk_size=4)\n",
    "eps, init_step, t_final = 0.1, 0.1, 5000.\n",
    "\n",
    "# this is where the mulit-processing happens\n",
    "if __name__ == \"__main__\":\n",
    "    evolve_ensamble(planet_chunks, t_final, initial_step_size=init_step, epsilon=eps, \n",
    "                    K_on=\"yes\", beta_on=\"yes\", evo_track_dict_list=list_tracks, path_save=path_save)\n",
    "\n",
    "# read in the results as a dataframe\n",
    "pl_LoFo14_Mcore10_dict, pl_LoFo14_Mcore10_init_df, tracks_LoFo14_Mcore10_dict = read_in_PLATYPOS_results(path_to_results=\"./results_LoFo14_Mcore10_varstep/\", N_tracks=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ot20 planets "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Folder results_Ot20_varstep/ exists.\n",
      "That took 0.0005422631899515787 minutes\n",
      "Total # of planet folders =  4\n",
      "Non-empty folders:  4\n",
      "\n",
      "Total number of planets to analyze:  4\n",
      "CPU times: user 58.1 ms, sys: 20.6 ms, total: 78.7 ms\n",
      "Wall time: 82.2 ms\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "folder_name = \"results_Ot20_varstep/\"\n",
    "path_save, planet_chunks = create_planet_chunks(curr_path, folder_name=folder_name, list_planets=planet_list_Ot, chunk_size=4)\n",
    "eps, init_step, t_final = 0.1, 1.0, 5000.\n",
    "\n",
    "# this is where the mulit-processing happens\n",
    "if __name__ == \"__main__\":\n",
    "    evolve_ensamble(planet_chunks, t_final, initial_step_size=init_step, epsilon=eps, \n",
    "                    K_on=\"yes\", beta_on=\"yes\", evo_track_dict_list=list_tracks, path_save=path_save)\n",
    "\n",
    "# read in the results as a dataframe\n",
    "pl_Ot_dict, pl_Ot_init_df, tracks_Ot_dict = read_in_PLATYPOS_results(path_to_results=\"./results_Ot20_varstep/\", N_tracks=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Plots from the Paper"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extract all the results and save as variables (NOTE: here I read in the results from the variable step size calculations)\n",
    "\n",
    "# medium activity track\n",
    "t1_c_Ot, M1_c_Ot, R1_c_Ot = pl_Ot_dict[\"planet_1\"][\"t1\"], pl_Ot_dict[\"planet_1\"][\"M1\"], pl_Ot_dict[\"planet_1\"][\"R1\"]\n",
    "t1_c_10, M1_c_10, R1_c_10 = pl_LoFo14_Mcore10_dict[\"planet_1\"][\"t1\"], pl_LoFo14_Mcore10_dict[\"planet_1\"][\"M1\"], pl_LoFo14_Mcore10_dict[\"planet_1\"][\"R1\"]\n",
    "t1_c_5, M1_c_5, R1_c_5 = pl_LoFo14_Mcore5_dict[\"planet_1\"][\"t1\"], pl_LoFo14_Mcore5_dict[\"planet_1\"][\"M1\"], pl_LoFo14_Mcore5_dict[\"planet_1\"][\"R1\"]\n",
    "t1_d_Ot, M1_d_Ot, R1_d_Ot = pl_Ot_dict[\"planet_2\"][\"t1\"], pl_Ot_dict[\"planet_2\"][\"M1\"], pl_Ot_dict[\"planet_2\"][\"R1\"]\n",
    "t1_d_10, M1_d_10, R1_d_10 = pl_LoFo14_Mcore10_dict[\"planet_2\"][\"t1\"], pl_LoFo14_Mcore10_dict[\"planet_2\"][\"M1\"], pl_LoFo14_Mcore10_dict[\"planet_2\"][\"R1\"]\n",
    "t1_d_5, M1_d_5, R1_d_5 = pl_LoFo14_Mcore5_dict[\"planet_2\"][\"t1\"], pl_LoFo14_Mcore5_dict[\"planet_2\"][\"M1\"], pl_LoFo14_Mcore5_dict[\"planet_2\"][\"R1\"]\n",
    "t1_b_Ot, M1_b_Ot, R1_b_Ot = pl_Ot_dict[\"planet_3\"][\"t1\"], pl_Ot_dict[\"planet_3\"][\"M1\"], pl_Ot_dict[\"planet_3\"][\"R1\"]\n",
    "t1_b_10, M1_b_10, R1_b_10 = pl_LoFo14_Mcore10_dict[\"planet_3\"][\"t1\"], pl_LoFo14_Mcore10_dict[\"planet_3\"][\"M1\"], pl_LoFo14_Mcore10_dict[\"planet_3\"][\"R1\"]\n",
    "t1_b_5, M1_b_5, R1_b_5 = pl_LoFo14_Mcore5_dict[\"planet_3\"][\"t1\"], pl_LoFo14_Mcore5_dict[\"planet_3\"][\"M1\"], pl_LoFo14_Mcore5_dict[\"planet_3\"][\"R1\"]\n",
    "t1_e_Ot, M1_e_Ot, R1_e_Ot = pl_Ot_dict[\"planet_4\"][\"t1\"], pl_Ot_dict[\"planet_4\"][\"M1\"], pl_Ot_dict[\"planet_4\"][\"R1\"]\n",
    "t1_e_10, M1_e_10, R1_e_10 = pl_LoFo14_Mcore10_dict[\"planet_4\"][\"t1\"], pl_LoFo14_Mcore10_dict[\"planet_4\"][\"M1\"], pl_LoFo14_Mcore10_dict[\"planet_4\"][\"R1\"]\n",
    "t1_e_5, M1_e_5, R1_e_5 = pl_LoFo14_Mcore5_dict[\"planet_4\"][\"t1\"], pl_LoFo14_Mcore5_dict[\"planet_4\"][\"M1\"], pl_LoFo14_Mcore5_dict[\"planet_4\"][\"R1\"]\n",
    "\n",
    "# low activity track\n",
    "t2_c_Ot, M2_c_Ot, R2_c_Ot = pl_Ot_dict[\"planet_1\"][\"t2\"], pl_Ot_dict[\"planet_1\"][\"M2\"], pl_Ot_dict[\"planet_1\"][\"R2\"]\n",
    "t2_c_10, M2_c_10, R2_c_10 = pl_LoFo14_Mcore10_dict[\"planet_1\"][\"t2\"], pl_LoFo14_Mcore10_dict[\"planet_1\"][\"M2\"], pl_LoFo14_Mcore10_dict[\"planet_1\"][\"R2\"]\n",
    "t2_c_5, M2_c_5, R2_c_5 = pl_LoFo14_Mcore5_dict[\"planet_1\"][\"t2\"], pl_LoFo14_Mcore5_dict[\"planet_1\"][\"M2\"], pl_LoFo14_Mcore5_dict[\"planet_1\"][\"R2\"]\n",
    "t2_d_Ot, M2_d_Ot, R2_d_Ot = pl_Ot_dict[\"planet_2\"][\"t2\"], pl_Ot_dict[\"planet_2\"][\"M2\"], pl_Ot_dict[\"planet_2\"][\"R2\"]\n",
    "t2_d_10, M2_d_10, R2_d_10 = pl_LoFo14_Mcore10_dict[\"planet_2\"][\"t2\"], pl_LoFo14_Mcore10_dict[\"planet_2\"][\"M2\"], pl_LoFo14_Mcore10_dict[\"planet_2\"][\"R2\"]\n",
    "t2_d_5, M2_d_5, R2_d_5 = pl_LoFo14_Mcore5_dict[\"planet_2\"][\"t2\"], pl_LoFo14_Mcore5_dict[\"planet_2\"][\"M2\"], pl_LoFo14_Mcore5_dict[\"planet_2\"][\"R2\"]\n",
    "t2_b_Ot, M2_b_Ot, R2_b_Ot = pl_Ot_dict[\"planet_3\"][\"t2\"], pl_Ot_dict[\"planet_3\"][\"M2\"], pl_Ot_dict[\"planet_3\"][\"R2\"]\n",
    "t2_b_10, M2_b_10, R2_b_10 = pl_LoFo14_Mcore10_dict[\"planet_3\"][\"t2\"], pl_LoFo14_Mcore10_dict[\"planet_3\"][\"M2\"], pl_LoFo14_Mcore10_dict[\"planet_3\"][\"R2\"]\n",
    "t2_b_5, M2_b_5, R2_b_5 = pl_LoFo14_Mcore5_dict[\"planet_3\"][\"t2\"], pl_LoFo14_Mcore5_dict[\"planet_3\"][\"M2\"], pl_LoFo14_Mcore5_dict[\"planet_3\"][\"R2\"]\n",
    "t2_e_Ot, M2_e_Ot, R2_e_Ot = pl_Ot_dict[\"planet_4\"][\"t2\"], pl_Ot_dict[\"planet_4\"][\"M2\"], pl_Ot_dict[\"planet_4\"][\"R2\"]\n",
    "t2_e_10, M2_e_10, R2_e_10 = pl_LoFo14_Mcore10_dict[\"planet_4\"][\"t2\"], pl_LoFo14_Mcore10_dict[\"planet_4\"][\"M2\"], pl_LoFo14_Mcore10_dict[\"planet_4\"][\"R2\"]\n",
    "t2_e_5, M2_e_5, R2_e_5 = pl_LoFo14_Mcore5_dict[\"planet_4\"][\"t2\"], pl_LoFo14_Mcore5_dict[\"planet_4\"][\"M2\"], pl_LoFo14_Mcore5_dict[\"planet_4\"][\"R2\"]\n",
    "\n",
    "# high activity track\n",
    "t3_c_Ot, M3_c_Ot, R3_c_Ot = pl_Ot_dict[\"planet_1\"][\"t3\"], pl_Ot_dict[\"planet_1\"][\"M3\"], pl_Ot_dict[\"planet_1\"][\"R3\"]\n",
    "t3_c_10, M3_c_10, R3_c_10 = pl_LoFo14_Mcore10_dict[\"planet_1\"][\"t3\"], pl_LoFo14_Mcore10_dict[\"planet_1\"][\"M3\"], pl_LoFo14_Mcore10_dict[\"planet_1\"][\"R3\"]\n",
    "t3_c_5, M3_c_5, R3_c_5 = pl_LoFo14_Mcore5_dict[\"planet_1\"][\"t3\"], pl_LoFo14_Mcore5_dict[\"planet_1\"][\"M3\"], pl_LoFo14_Mcore5_dict[\"planet_1\"][\"R3\"]\n",
    "t3_d_Ot, M3_d_Ot, R3_d_Ot = pl_Ot_dict[\"planet_2\"][\"t3\"], pl_Ot_dict[\"planet_2\"][\"M3\"], pl_Ot_dict[\"planet_2\"][\"R3\"]\n",
    "t3_d_10, M3_d_10, R3_d_10 = pl_LoFo14_Mcore10_dict[\"planet_2\"][\"t3\"], pl_LoFo14_Mcore10_dict[\"planet_2\"][\"M3\"], pl_LoFo14_Mcore10_dict[\"planet_2\"][\"R3\"]\n",
    "t3_d_5, M3_d_5, R3_d_5 = pl_LoFo14_Mcore5_dict[\"planet_2\"][\"t3\"], pl_LoFo14_Mcore5_dict[\"planet_2\"][\"M3\"], pl_LoFo14_Mcore5_dict[\"planet_2\"][\"R3\"]\n",
    "t3_b_Ot, M3_b_Ot, R3_b_Ot = pl_Ot_dict[\"planet_3\"][\"t3\"], pl_Ot_dict[\"planet_3\"][\"M3\"], pl_Ot_dict[\"planet_3\"][\"R3\"]\n",
    "t3_b_10, M3_b_10, R3_b_10 = pl_LoFo14_Mcore10_dict[\"planet_3\"][\"t3\"], pl_LoFo14_Mcore10_dict[\"planet_3\"][\"M3\"], pl_LoFo14_Mcore10_dict[\"planet_3\"][\"R3\"]\n",
    "t3_b_5, M3_b_5, R3_b_5 = pl_LoFo14_Mcore5_dict[\"planet_3\"][\"t3\"], pl_LoFo14_Mcore5_dict[\"planet_3\"][\"M3\"], pl_LoFo14_Mcore5_dict[\"planet_3\"][\"R3\"]\n",
    "t3_e_Ot, M3_e_Ot, R3_e_Ot = pl_Ot_dict[\"planet_4\"][\"t3\"], pl_Ot_dict[\"planet_4\"][\"M3\"], pl_Ot_dict[\"planet_4\"][\"R3\"]\n",
    "t3_e_10, M3_e_10, R3_e_10 = pl_LoFo14_Mcore10_dict[\"planet_4\"][\"t3\"], pl_LoFo14_Mcore10_dict[\"planet_4\"][\"M3\"], pl_LoFo14_Mcore10_dict[\"planet_4\"][\"R3\"]\n",
    "t3_e_5, M3_e_5, R3_e_5 = pl_LoFo14_Mcore5_dict[\"planet_4\"][\"t3\"], pl_LoFo14_Mcore5_dict[\"planet_4\"][\"M3\"], pl_LoFo14_Mcore5_dict[\"planet_4\"][\"R3\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "t1_c_5_new, M1_c_5_new, R1_c_5_new = pl_LoFo14_Mcore5_dict_new[\"planet_3\"][\"t1\"], pl_LoFo14_Mcore5_dict_new[\"planet_3\"][\"M1\"], pl_LoFo14_Mcore5_dict_new[\"planet_3\"][\"R1\"]\n",
    "t2_c_5_new, M2_c_5_new, R2_c_5_new = pl_LoFo14_Mcore5_dict_new[\"planet_3\"][\"t2\"], pl_LoFo14_Mcore5_dict_new[\"planet_3\"][\"M2\"], pl_LoFo14_Mcore5_dict_new[\"planet_3\"][\"R2\"]\n",
    "t3_c_5_new, M3_c_5_new, R3_c_5_new = pl_LoFo14_Mcore5_dict_new[\"planet_3\"][\"t3\"], pl_LoFo14_Mcore5_dict_new[\"planet_3\"][\"M3\"], pl_LoFo14_Mcore5_dict_new[\"planet_3\"][\"R3\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<function matplotlib.pyplot.show(*args, **kw)>"
      ]
     },
     "execution_count": 56,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcVQd99/HP79wNGGbYtzCEQEgIkA0CgQQCxGo01jZJY2usjdb6SKlbfVVbbetjbVzqWrVPrUq1VfvUxrjQpIkm4TECIQQCBMIeIARZBsLOzBC46+/54x7iZDLD3IGZOffO/b5fr3nduWe553sPL773zlnN3RERkeoRRB1ARER6lopfRKTKqPhFRKqMil9EpMqo+EVEqoyKX0Skyqj4RUSqjIpfRKTKxKMO0JqZGTASaI46i4hIBekPHPISzsotu+KnWPoNUYcQEalAlwAHO5qoHIu/GeDAgQPU1tZGnUVEpOw1NTUxevRoKHFLSTkWPwC1tbUqfhGRbqCduyIiVUbFLyJSZVT8IiJVRsUvIlJlSip+M9tjZpvMbIOZrT3PdDPMLG9mb20x7F1mtjP8eVdXhBYRkQvXmaN6bnX3o+2NNLMY8AXgsRbDBgN/B0wHHFhnZg+5+4kLzCsiIhepKzf1fBD4KXC4xbA3Akvc/XhY9kuAN3XhMl/h6UbSS99KZt0/dsfLi4j0GqUWvwOPm9k6M1vQeqSZjQbuAr7VatRoYF+L5/vDYV0v2Z/4lGX4me93y8uLiPQWpW7qme3uDWY2HFhiZtvdfXmL8V8DPubu+eKldl7xqiehNq8jEX6gLOAC/woxC8jtGkZ8fAPuBcy031pEpC0ltaO7N4SPh4HFwI2tJpkO3G9me4C3Av9iZndS/IY/psV09bRzHR53X+Tu04F5nXkDr5KdSewSyO9ddsEvISLS23VY/GZWY2a1534HbgM2t5zG3ce5+2XufhnwE+B97v7fFHf03mZmg8xsUDjvY3SToP4eAPK//q/uWoSISMUrZVPPCGBxuAknDvzQ3R81s4UA7t56u/4r3P24mX0aWBMOus/dj19k5nbFx72B/Etgsae7axEiIhXPSrh0c48K/7pobGxsvKCLtGWeuobYhEMEw1/Sdn4RqQpNTU3U1dUB1Ll7U0fT97pm9PxNxEZA7sUlUUcRESlLva74Y2PfDkBh//0RJxERKU+9r/gvnUe+AUisjjqKiEhZ6nXFbxaQ230JiSuO4IVc1HFERMpOryv+ojkEQyG365Gog4iIlJ1eWfyxy+4FoHDwgYiTiIiUn15Z/PH6WeReDLB+2s4vItJaryx+gPzey4lPPomnG6OOIiJSVnpt8VvfNxPUGNmt34s6iohIWem1xR+f/F484/ip/446iohIWem1xR/0H0F2S3+CUdujjiIiUlZ6bfED+KmpJCZmyR/e3PHEIiJVolcXfzCieJnm3I5/jTiJiEj56NXFH594N/kjAEsjTiIiUj56dfFbECe3YyTxiQ26fIOISKhXFz8AfiuxYZDbsTjqJCIiZaGk4jezPWa2ycw2mNnaNsbfYWYbz403szktxuXD4RvM7KGuDF+K+MQ/BaBw6D96etEiImWplFsvnnOrux9tZ9wvgYfc3c3sWuAB4Kpw3Bl3v/5iQl6M2LApZDenCIY+G1UEEZGy0iWbety92X9zD8caoKzu51g4Oo345LPkj2yJOoqISORKLX4HHjezdWa2oK0JzOwuM9sOPAL8SYtRfcLNP6vM7M72FmBmC8LNSMtKDV+qYNQ7scDIbf9GV7+0iEjFKelm62Z2ibs3mNlwYAnwQXdf3s60c4FPuvvrW807HngC+C13f+E8y7qom623xb1A4eAI8nuHkJylM3lFpHfplputu3tD+HgYWAzceJ5plwOXm9nQVvPupnhA/dRSltmVzAJyu8YTv/qortYpIlWvw+I3s5rwWzhmVgPcBmxuNc0EM7Pw92lAEjhmZoPMLBUOHwrMBrZ27VsojfX9XYL+RnbzoigWLyJSNkr5xj8CWGFmzwHPAI+4+6NmttDMFobT3A1sNrMNwDeAt4U7eycBa8N5fwV83t0jKf7E1e/DX3a8+WdRLF5EpGyUtI2/J3XHNv5zMquvJHbJSYL6Q5j1/nPXRKQ6dMs2/t7C0/OJjXFyOx+MOoqISGSqqvjjk/4cLziFhu9EHUVEJDJVVfyxYVPIbepH7BKdxSsi1auqih+gcPIW4lfmyO15IuooIiKRqLrij034EAD5Pf8ccRIRkWhUXfHHR88kuzVJMPSZqKOIiESi6oofoHD4RhJXp8k3rIk6iohIj6vK4o+NfT8AuZ1fjziJiEjPq8rij497PbmdcYIBT0YdRUSkx1Vl8QPkD0wlfu1p8i9tjDqKiEiPqtriD8Z8MLxG/xeijiIi0qOqtvgTl99O9vkEwZAuv++LiEhZq9riBygcnEXi6jS5vdrWLyLVo6qLPzbhrwDI7/5KxElERHpOVRd/vH4W2Y19iI1eHXUUEZEeU1Lxm9keM9tkZhvCG6K3Hn+HmW08N97M5rQY9y4z2xn+vKsrw3eFwolbiV+RI7vzf6KOIiLSI0q92foeYLq7H21nfH/gtLu7mV0LPODuV5nZYGAtMB1wYB1wg7ufOM+yuu1GLG3JH9lCMHgemSenkpq/pNuXJyLS1SK5EYu7N/tvPkFqKJY8wBuBJe5+PCz7JcCbumKZXSU2bArZDXXExj+HF3JRxxER6XalFr8Dj5vZOjNb0NYEZnaXmW0HHgH+JBw8GtjXYrL94bCy4md+h/ilTnbTv0YdRUSk25Va/LPdfRpwO/B+M5vbegJ3X+zuVwF3Ap8OB1sbr9XmtiUzWxDuP+jxA+sTUz9BocnxRhW/iPR+JRW/uzeEj4eBxcCN55l2OXC5mQ2l+A1/TIvR9UBDO/MtcvfpwLzSonedoGYY2Q2Xkrh+L4XTR3p68SIiParD4jezmnCHK2ZWA9wGbG41zQQzs/D3aUASOAY8BtxmZoPMbFA472Nd+xa6htW9l6DWyK7/TNRRRES6VSnf+EcAK8zsOeAZ4BF3f9TMFprZwnCau4HNZrYB+AbwNi86TnGzz5rw575wWNlJXPNecr82rN9DUUcREelWJR3O2ZN6+nDOltJL30Jy7iryDQ8Tr5/Vo8sWEblQkRzO2VvEJvwNFhj5XZ+LOoqISLdR8bcQr7+ZzPoaYuNW6Zh+Eem1VPyt+Jm3Eh/rZNd/LeooIiLdQsXfSvKGT1I4CmS+G3UUEZFuoeJvxVJ1ZDdPITH9CPnDmzueQUSkwqj42xAb+wksYeS2fiLqKCIiXU7F34b4uNeTWV9D/PKV2skrIr2Oir89Z/6A2Bgn++xXo04iItKlVPztSNzwCfJHgLwu3CYivYuKvx2WqiO3ZSqJGcd1M3YR6VVU/OcRn/h5yEN+t3byikjvoeI/j9ioaWTXjCQxdQuF5peijiMi0iVU/B2w2o8QDDCyz3486igiIl1Cxd+B+NXvIrs1SWz0L3Rop4j0Cir+DpgFFE78PvHL8zq0U0R6BRV/CZLT7yP/EmDfjDqKiMhFK6n4zWyPmW0ysw3hDdFbj3+HmW0Mf1aa2XWlzlsJLFVHbtstJG9oIrv9x1HHERG5KPFOTHurux9tZ9yLwDx3P2FmtwOLgJklzlsRElO/RqFxGn7sPuD3o44jInLBumRTj7uvdPcT4dNVQH1XvG45CQZcSvbZq0nMPEhu34qo44iIXLBSi9+Bx81snZkt6GDa9wC/uMB5y1p84legAPndH4s6iojIBSt1U89sd28ws+HAEjPb7u7LW09kZrdSLP45FzDvAmABZbzDOTbqBtJPjiEx/XkKx3cRDJ4QdSQRkU4rqWTdvSF8PAwsBm5sPY2ZXQt8B7jD3Y91Zt5w/CJ3nw7M6+R76FHBqM8S1BjZje+POoqIyAXpsPjNrMbMas/9DtwGbG41zaXAz4B73X1HZ+atNIkJbybz9DASU9dROLE76jgiIp1Wyjf+EcAKM3sOeAZ4xN0fNbOFZrYwnOaTwBDgX1odttnmvF38HnqcDfmH4mUcnntf1FFERDrN3D3qDK8S/oXQ2NjYSG1tbdRx2pV5ehLxyUfA1xIMvCzqOCJSxZqamqirqwOoc/emjqYv2x2p5c6GfK74rX/Dn0UdRUSkU1T8Fyhx5V1kVg0lMXUNhVN7o44jIlIyFf9FsEGfLX7rX69v/SJSOVT8FyEx8ffIrBpCYupqCif3RB1HRKQkKv6LZIP/AauF7IY/iTqKiEhJVPwXKXHlXWRW1pOctZF8w5qo44iIdEjF3wVi474NQO6Fir4UkYhUCRV/F4iPnklm1dUkZ+8ju+PBqOOIiJyXir+LJK77N7wR/NRHoo4iInJeKv4uEgwaT3bDPJIzTpHZ8I2o44iItEvF34WSM79DvgEs+Tm8kIs6johIm1T8Xcj6DiK3+w9JTM6QeepDUccREWmTir+LJW/+CtlNfYhf9WMKp/ZHHUdE5DVU/F3MgjjEv0wwxMlueHvUcUREXkPF3w0Sk95GZsU4krO3kd31cNRxREReRcXfTeJTfog3gTd9APdC1HFERF5RUvGb2R4z29Tq7lotx7/DzDaGPyvN7LoW495kZs+b2S4z+3hXhi9nsSFXkN342ySnniaz6m+jjiMi8oqS7sBlZnuA6e5+tJ3xNwPb3P2Emd0OfMrdZ5pZDNgBvAHYD6wB3u7uW8+zrIq4A1cpPHeW3AvjCeqyWM0GgrrRUUcSkV4okjtwuftKdz8RPl0F1Ie/3wjscvfd7p4B7gfu6IplVgKL94HcFwhGONn1d0cdR0QEKL34HXjczNaZWUdXInsP8Ivw99HAvhbj9ofDXsPMFoSbkZaVmKkiJKbcS+bJq0jNe4HMxu9EHUdEpOTin+3u04Dbgfeb2dy2JjKzWykW/8fODWpjsja3Lbn7InefDswrMVPFSNzwU/L7jaDmE3i6Meo4IlLlSip+d28IHw8DiyluwnkVM7sW+A5wh7sfCwfvB8a0mKweaLiYwJUo6D+C/MG/IH55nszTb4s6johUuQ6L38xqwh2umFkNcBuwudU0lwI/A+519x0tRq0BrjCzcWaWBO4BHuqq8JUkOePjpJ8aRfLmNWR3/k/UcUSkipXyjX8EsMLMngOeAR5x90fNbKGZLQyn+SQwBPiXlod8unsO+ADwGLANeMDdt3T5u6gQ8Yk/xhsNsgvx7MtRxxGRKlXS4Zw9qTcdztmW9NN/S+qmRaSXTic1/xcdzyAi0oFIDueU0qVu+izpFaNJzllDdvMPoo4jIlVIxR+BxDUPUzgUYDV/SeH0kajjiEiVUfFHIBhQT/7I/yY+rkB27e9EHUdEqoyKPyLJqR8kvXRy8cSuNf8QdRwRqSIq/gglZz1I9vk48fFfIX9wXdRxRKRKqPgjZH0GYokfQAoKh+/Cc2ejjiQiVUDFH7H4+DeQfe5eEtedIbNC2/tFpPup+MtAavZXSS8fS2r+BjJrvxR1HBHp5VT8ZSI5Ywm5HXHil32RfMOaqOOISC+m4i8T1ncQHv8eJJ3CyTvxMyc6nEdE5EKo+MtIYvwbyW77AInJGTLrbtW9ekWkW6j4y0xq5qdIL51Jas4BMsvvjTqOiPRCKv4ylJz732RWDSE5+zEyz34t6jgi0suo+MuQBXHiU35F/sU48cs+Q27PE1FHEpFeRMVfpoLaUZD8ERQMeDv5YzujjiQivURJxW9me8xsU8ubrLQaf5WZPW1maTP7aGfmlfbFx84jf/CLxEbkKRx4HX72ZNSRRKQXiHdi2lvd/Wg7444DHwLuvIB55TwS17yb9NO7SM78NpnVN5OcuRELOvPPJiLyal2yqcfdD7v7GiDbFa8nr5a66bNklr+O1E1HyCx/fdRxRKTClVr8DjxuZuvMbEEnl3Ex80ooOe9+0ssmkJq/hfTSu6OOIyIVrNTin+3u04Dbgfeb2dxOLKOkec1sQbgPYFknXrtqmAUk5ywjs3IEqfnLSS/XZ6iIXJiSit/dG8LHw8Bi4MZSF1DqvO6+yN2nA/NKfe1qY7EkiemryKwZQHLOz8is/FjUkUSkAnVY/GZWY2a1534HbgM2l/LiFzOvtM2S/YlPWU1uUz8S079LZs3no44kIhWmlMNDRgCLzezc9D9090fNbCGAu3/LzEYCa4E6oGBmHwYmA0Pbmrfr30Z1CfoNgctWknvhRhLXfJnMujjJGz7a8YwiIoC5e9QZXiX8C6GxsbGR2traqOOUtcLxXeSPzCU+NkN2y8dV/iJVqqmpibq6OoA6d2/qaHqduVvBgsETiA1bTu7XSRKTP09m3ZejjiQiFUDFX+FeKf+9Yfmv/WLUkUSkzKn4e4FXyn9PksS1X9TRPiJyXir+XiIYPIHYJc+Q29aPxKzvkl7+v6KOJCJlSsXfiwQD6olf+RzZtYNIzX2Q9NK7dBcvEXkNFX8vY30HkZj6HOmnRpKav4LMstep/EXkVVT8vZAl+pG8aT3pZVeQmr+F7MrrdElnEXmFir+XsiBOcu4K0ktvITn7ELkd15A/+nzUsUSkDKj4ezGzgNT8n5F++r3ErziDn76F7O7Hoo4lIhFT8VeB1E2fI/fCP2L9nNjgd5BZ/09RRxKRCKn4q0Ti6nfi6QcpHI2TuPo+0svu1U5fkSql4q8i8fqbCYatJfvsYFLzHiXz1FQKLx+LOpaI9DAVf5UJBtSTmLGV9NKbSN58gPy+a8jtfTLqWCLSg1T8VciCOKn5D5Fd91FiIzIEtXfpuv4iVUTFX8WSMz5O4dRPyR9OkJzxFdJL5+OZ5qhjiUg3U/FXufjYecQv3Up6+XhS87eQ2zmR3K9122OR3qyk4jezPWa2ycw2hDdEbz3+KjN72szSZvbRVuPeZGbPm9kuM/t4VwWXrmN9B5Gau5r00wuIjU4TDLqb9FN/EXUsEekmnfnGf6u7Xx/eEL2148CHgFfdCcTMYsA3gNsp3orx7WY2+ULDSvdK3fRZCs0Pk9/Tj9Ts/yC94joKJ/dEHUtEuliXbOpx98PuvgbIthp1I7DL3Xe7ewa4H7ijK5Yp3SNeP4v45B2kl84gOesAfmaGbu4i0suUWvwOPG5m68xsQSdefzSwr8Xz/eEwKWMW70Nq/s/J7fxnvDlGcvqXSC+fQaHpYNTRRKQLlFr8s919GsVNNu83s7klzmdtDGvz7u5mtiDcf6A9i2UiMekeYmO2k156DcnZL+KnriOz9ktRxxKRi1RS8bt7Q/h4GFhMcRNOKfYDY1o8rwca2lnGonD/wbwSX1t6gPUZSGr+E+S2fgnPGMnpXySz8mryhzdHHU1ELlCHxW9mNWZWe+534Dag1P/1a4ArzGycmSWBe4CHLjSsRCdxzbuJjd5JeulMEjccwlLzSS9/D17IRR1NRDqplG/8I4AVZvYc8AzwiLs/amYLzWwhgJmNNLP9wF8AnzCz/WZW5+454APAY8A24AF339I9b0W6m6XqSM1/mPyB/yK3uz+puQ+R2zKO7I4Ho44mIp1g7m1uco9M+NdFY2NjI7W1tVHHkXa4F8g89WESk36IDYDMU1eSuOYHBIMnRB1NpOo0NTVRV1cHUOfuTR1NrzN35YKYBaTm/BPO02RWTiA5ZwfYLNLL/gjPvhx1PBE5DxW/XJTYkCtIzV1F7oXvknuxltS8x8jvHa9j/0XKmIpfukTiyjtITH2BzOoPQsxJTv8SmbWXk93+46ijiUgrKn7pMmYByZmfJDZqJ+mltxK//BSJq95HeuUUci/+v6jjiUhIxS9drnj0zwMQbCC9dBqJa18iNuYe0sunkz+4Lup4IlVPxS/dJhhQT2r+Y/iZZWSemkhy5h6CQW8kvWy2PgBEIqTil24XGzaF1LynyB95mMyasSRvfp5g8BtJL7+R3L4VUccTqToqfukx8fpZpG5ZR/6lh8isvpzkzN3ERt1JesVU7QMQ6UEqfulx8fqbSc1dTeH442SemkRy2j5iY+8hs+oqMhsX4V6IOqJIr6bil8jERk0jNe9JCqeXkVk+lfiVR0le+7fkto4hs/Iv8dzZqCOK9EoqfolcbNgUUvOXQGob6eVvwfrlSN78PQqHLiW99A8onNofdUSRXkXFL2UjqBlGau6/Ext7gMzqD1I42pfU/F9B7HrSy2foZDCRLqKLtElZy267n8LRL5Kcvhfra2Q3pyicvJPkDZ/G+g6KOp5IWdBF2qRXSUy6h9Qtz+LptaSX3Yb1zZGa8yP87BWkl91CdtfPo44oUnH0jV8qinuB7HPfwl/+BsnpL2FJI7slSeHoG0hc+0mCQeOjjijS4zr7jV/FLxUrf2Qbua2fJhi5lMTELJ52ss8Oh/g7SEz9CBbvE3VEkR7RLcVvZnuAJiAP5MJ747Ycb8DXgTcDLwN/7O7PhuPywKZw0r3u/rsdLEvFL52Wff4nFA59ncSU7QRDIX8YctuuxAa9m8TVf4wF8agjinSb7iz+6e5+tJ3xbwY+SLH4ZwJfd/eZ4bhmd+9f6htQ8cvF8EwzmfVfxvxHJK47gvU18geM3M5JBMMXEJ/0dsy0a0t6l6h27t4B/MCLVgEDzWxUF722SMks2Z/UzE+RnLUNz20i/dQfkT8wgOTNW0hM/jD5vSNJL30D2ed/ojOEpWqVWvwOPG5m68xsQRvjRwP7WjzfHw4D6GNma81slZnd2d4CzGyBma0FlpWYSeS8gtpRpGZ/leSNO/GX15J+8q0UjvQnOWc9iYl/RuHASNLL5pBZ/390lrBUlVI3fM529wYzGw4sMbPt7r68xXhrY55z25AuDecdDzxhZpvc/YXXTOy+CFh0blNPZ96ESEeCgZeRuuWbAOSPPk9u21ex5BMkZ27H+txH4cTfk9kyGmJvIXHNhwj6j4g4sUj3Kekbv7s3hI+HgcXAja0m2Q+MafG8HmhoNe9uYCkw9aISi1yk2NCJpG75FsmZO/D8NtKr/ozslnoSkw+QumkRFp9CZs3lpJe9g9zuJdokJL1Oh8VvZjXht3DMrAa4DdjcarKHgHda0SzglLsfNLNBZpYK5x0KzAa2duk7ELkIQc0wUrPuIzVnA1a3n8yGT5FZPYlgSDOpeY8TH/+HFPaPJL18JunVn6LQdDDqyCIXrcOjesJNNIvDp3Hgh+7+WTNbCODu3woP5/xn4E0UD+d8t7uvNbObgW8DBYofMl9z9+92sDwd1SNlIbdvBfkX/w1LPUV88jGCWsMzTnZLf/zUNILhdxO/8m6dLyCR0wlcIt3AM81kt34fP/kzglFbSUzMAVA45eSeH4S/fAPByLuJX3mXzhmQHqfiF+kB+cObye/6Pp5bSmzMXuLjivsBCiec3PND8PQMgpG/R3zCW7BYMuK00tup+EUikD+4jtwLPwB/kvhl+4mNKf6/Kpxycjvr8ObJWN1vEb/iHoJaneIiXUvFL1IGcvtWkP/1j6GwitjIvcQmZLHA8LyT25GkcPgyLDGbYOxbiV0yQ2cTy0VR8YuUocKpveR23o83P4HVPU/8yiaC/sXTX/KHIb9nIP7yRKxmDrFxdxEbOjHixFJJVPwiFcBzZ8ntfJDC4UcgtpHYqEPExuWwIPww2G/k9w3F05OwAfOJj7+LYEB9xKmlXKn4RSpUofEAud0P4id/BcmtxOqPEL/0N/8/8/uM/IFB+NnLoe8MYpe8gVj9zdpMJCp+kd4kf2wn+RcX481PQ3IHsZFHiV2Wf+Uvg8IpJ7+nH4WT9RBcSzBkLrGxbyCoGRZxculJKn6RXq5w+gj5F39B4fhy8M0Egw4QG3eGoPY3l8zK7zPyh+rw0/UQm0wwaBaxS3+LoG70eV5ZKpWKX6QKeSFHft+T5A/+Es5uxBIvYkOPER+bwfq0+EA4YOQP1uLNoyE2CaubRmzUbIJhk7XJqIKp+EXkFZ7PkN//FIVDT+Jn1kN8N8Hgo8TGpglqfvOBUGh08geSFE4Mgkw9xCcSDJhKcMkcgsGX60OhzKn4RaRDXsiRP7CKwksr8dObgN1Yv0MEw5uJjc5j8RYfCied/P4+FE4Nhmw9xMdjtVMIhk4jNnKqzkwuAyp+Ebkonmkmv/9pCkdX4y9vgeBFrOYlYiNOE1xSeGXHMoBnnXxDQOFYDX56MOTrIVH8YIgNn04w/Gpdu6gHqPhFpNt4upH8wbUUjm3AT2+HwotY4hBWd4JgeJpYq/vX+FknfzBG4UQ//PRAyA+HoB7rOx4bMJnYsOuwgZdpU9JFUvGLSGT8zAlyB5/Bj63HzzwPhV9D6hBB/0aCIWmCEY7FXn3DPn/Zyb8Ufji8PAByw4ofDqlxWO3lBAOvJBg6CUv2j+hdlT8Vv4iULc+dpXBkC4Vjmyg07YDMHvADkDza4sOh8Kp9DOcUjjmF43EKjX3xM3WQGwyMgMQlWL9xWN0EYkOnYHX1VfcXRLcUv5ntAZqAPJBz9+mtxhvwdeDNFG/E8sfu/mw47l3AJ8JJP+Pu3+9gWSp+kSrm+QyFI1spHN+CN+/Gz+6DQgMER7HkSaymmWBghmBY4VWHqr4y/1mncMIonErgp/vgZ2sgNwB8MATDIDkK6zsG638pwcAJBIPGVfx+iM4Wf2fe7a3ufrSdcbcDV4Q/M4FvAjPNbDDwd8B0ijdfX2dmD7n7iU4sV0SqiMWSxEZeT2zk9eedzr1A4dR+8se24Y278JdfhMwB4CWIncRSTVi/MwRDmwkGHiQY8NoPCQDPO/kjhp+K4c0p/GwfPNsf8v2BgWCDIDEUS47A+o7EakZjtWMIBoyp2LuvddXH3B3AD7z458MqMxtoZqOA+cASdz8OYGZLKN6e8b+6aLkiUqXMAmzApQQDLgXe2OH0nm6kcHwXhcbdePNePN0A2UPgRyA4gSWbsL6nCYY0Yv2PY3X+qnMd2lI45XhTQKE5jp9Jwtm+eK4fFPqC9wdqIaiD+CAsPhBSQ7DUUKzvcKzf8OK9GVJ1Pb5pqtTid+BxM3Pg2+6+qNX40cC+Fs/3h8PaGy4i0qMsVUds1DRio6aVPI+nGymc2kuhaR+83ICfPYSnD0P+GPgJsFMQa8aSp7E+aWzYCazmKNbPsVpedehru8vIOIVm8NMBheN9SFy392LeZklKLf7Z7t5gZsOw3Z8VAAAFMklEQVSBJWa23d2Xtxjf1rvz8wx/DTNbACygeFN2EZHIWaqO2PCriQ2/utPzeiFHofkY3nwQf/kIfvYwnj6GZ45B9iTkT4I3As1gzRA7A4We2ddQ0lLcvSF8PGxmi4EbgZbFvx8Y0+J5PdAQDp/favjSdpaxCFh0buduafFFRMqTBXGs/wjoP6LjiXtYh9+uzawmLGPMrAa4DdjcarKHgHda0SzglLsfBB4DbjOzQWY2KJz3sS59ByIi0imlfOMfASwuHrFJHPihuz9qZgsB3P1bwM8pHsq5i+LhnO8Oxx03s08Da8LXuu/cjl4REYmGTuASEalwnT2OXztSRUSqjIpfRKTKqPhFRKqMil9EpMqU7ZWJmpo63D8hIiJ0vi/L8aieURRP/hIRkc65JDyH6rzKsfgNGAk0R50FWAbMizrERajk/JWcHZQ/SpWcHS48f3/gkJdQ6mW3qScM3eEnVk8ws0Ipx8SWq0rOX8nZQfmjVMnZ4aLylzyPdu6KiFQZFf/5tb78dKWp5PyVnB2UP0qVnB16IH/ZbeMXEZHupW/8IiJVRsUPmNkYM/uVmW0zsy1m9ufh8E+Z2QEz2xD+vDnqrG0xsz5m9oyZPRfm//tw+DgzW21mO83sR2aWjDprW86T/3tm9mKL9X/+m7BGyMxiZrbezB4On1fEuj+njfyVtO73mNmmMOfacNhgM1sSrv8l4WXhy1I7+bu1e1T8RTngI+4+CZgFvN/MJofjvuru14c/P48u4nmlgde5+3XA9cCbwvsifIFi/iuAE8B7Isx4Pu3lB/jLFut/Q3QRO/TnwLYWzytl3Z/TOj9UzroHuDXMOT18/nHgl+H6/2X4vJy1zg/d2D0qfsDdD7r7s+HvTRT/A1TMvYG96Nx5D4nwx4HXAT8Jh38fuDOCeB06T/6KYGb1wG8D3wmfGxWy7uG1+XuJOyiudyjz9R8FFX8rZnYZMBVYHQ76gJltNLN/K/M/F2NmtgE4DCwBXgBOunsunKSsb3TfOr+7n1v/nw3X/1fNLBVhxPP5GvBXQCF8PoQKWve8Nv85lbDuofgl4XEzWxfeuxtgxLkzWMPH4ZGl61hb+aEbu0fF34KZ9Qd+CnzY3RuBbwKXU9z8cBD4SoTxzsvd8+5+PcX7Gt8ITGprsp5NVbrW+c3sauCvgauAGcBg4GMRRmyTmb0FOOzu61oObmPSslz37eSHClj3Lcx292nA7RQ3086NOlAntZW/W7tHxR8yswTF0v9Pd/8ZgLu/FBZSAfhXioVa1tz9JMUb2s8CBprZubOz66mAayC1yP+mcBOcu3sa+HfKc/3PBn7XzPYA91PcxPM1Kmfdvya/mf3fCln3ALh7Q/h4GFhMMetL4XW/zl3/63B0Cc+vrfzd3T0qfl7ZJvtdYJu7/2OL4aNaTHYXr73JfFkws2FmNjD8vS/weor7KX4FvDWc7F3Ag9EkPL928m9v8R/XKG6jLbv17+5/7e717n4ZcA/whLu/gwpZ9+3k/6NKWPcAZlZjxdu1YmY1wG0Usz5Ecb1DGa//9vJ3d/eU3bV6IjIbuBfYFG5nBvgb4O3hYWwO7AH+NJp4HRoFfN/MYhQ/zB9w94fNbCtwv5l9BlhP8cOtHLWX/wkzG0Zx08kGYGGUITvpY1TGum/Pf1bIuh8BLC5+PhEHfujuj5rZGuABM3sPsBf4/Qgznk97+f+jO7tHZ+6KiFQZbeoREakyKn4RkSqj4hcRqTIqfhGRKqPiFxGpMip+EZEqo+IXEakyKn4RkSrz/wH9Sasgt8br6gAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots()\n",
    "ax.plot(t3_c_5, M3_c_5, ls=\"-\", color=\"xkcd:red\", lw=1.5, zorder=1)\n",
    "ax.plot(t3_c_5_new, M3_c_5_new, ls=\"-\", color=\"xkcd:yellow\", lw=1.5, zorder=1)\n",
    "plt.show"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Plot mass & radius evolution planet c"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAKfCAYAAABnkPfxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd0HNXdxvHv3VXvZSX33rCNGxgTmiGEVEIaIaGHEgxvgACJCTgUBwiEXlIooZNQQk8ICS303mwDNmDcG7ZWvZfdve8fs7taybK6tEXP55w5s5qdWV1h45+emVuMtRYREREREZFY54p2A0RERERERLpD4UVEREREROKCwouIiIiIiMQFhRcREREREYkLCi8iIiIiIhIXFF5ERERERCQuKLyIiEi/M8a8bIz5ebTbISIiiUXhRUREesUYs8EY02CMqTXG7DDG3G2MyYpCGw4ZzO8pIiLRo/AiIiJ9cZi1NgvYA9gLuDDK7RERkQSm8CIiIn1mrd0K/BfYvf17xphJxpgXjTFlxphSY8z9xpi8iPc3GGMWG2M+MsZUGWP+YYxJi3j/u8aY5caYSmPMm8aY2cHjfwPGAk8Fn/78pqO2GWO+H7y+2hiz1hjzrf7++UVEZHAovIiISJ8ZY8YA3wGWdfQ28AdgJDAdGAP8rt05PwG+BUwAZgMnBD93D+Au4FSgELgN+JcxJtVaexywieDTH2vt1R20awFwH3AukAcsBDb0/icVEZFoUngREZG+eNIYUwm8DrwCXNH+BGvtGmvt89baJmutF7geOLDdaX+01m6z1pYDTwFzg8dPAW6z1r5jrfVba+8FmoCvdLN9JwN3Bb9/wFq71Vr7Wc9/TBERiQVJ0W6AiIjEtR9Ya1/o7ARjTDHwR+AAIBvnxllFu9O2R7yux3lKAzAO+Jkx5syI91Mi3u/KGOA/3TxXRERinJ68iIjIQPsDYIHZ1toc4FicrmTdsRm43FqbF7FlWGsfDL5vu3H9pF61WkREYo7Ci4iIDLRsoBaoNMaMwhl/0l23A6cZY/Y2jkxjzKHGmOzg+zuAiZ1cfydwojHma8YYlzFmlDFmt179FCIiEnUKLyIiMtAuwZlKuQp4Gni8uxdaa9/HGffyZ5yuZmsIDuYP+gNwYXAmssUdXP8ucCJwQ/D7v4LTFU1EROKQsbarJ+4iIiIiIiLRpycvIiIiIiISFxReREREREQkLii8iIiIiIhIXFB4ERERERGRuKDwIiIiIiIicUHhRURERERE4oLCi4iIiIiIxAWFFxERERERiQsKLyIiIiIiEhcUXkREREREJC4ovIiIiIiISFxQeBERERERkbig8CIiIiIiInFB4UVEREREROKCwouIiIiIiMQFhRcREREREYkLCi8iIiIiIhIXFF5ERERERCQuKLyIiIiIiEhcUHgREREREZG4oPAiIiIiIiJxQeFFRERERETigsKLiIiIiIjEBYUXEREZkowxBxljbAdbZTevn26MecQYU2qMaTDGfG6MOWug2y0iMpQlRbsBscwYY4DhQG202yIiEmVZwHZrrY12QwbAL4H3Ir72dXWBMWY+8CLwMvBzoAqYgvPfqf25qiUiIo4+1xKFl84NB7ZFuxEiIjFiJPBltBsxAD611r7d3ZONMS7gXuB/1tofRrz10i4uUS0REWnVp1qi8NK5WoCtW7eSnZ0d7baIiERFTU0No0aNAj05CDkImAGc1s3zVUtEZMjrr1qi8NIN2dnZKjgiIonrfmOMB6gEngXOt9Zu6uT8/YP7NGPM28CeQAXwEHCetbaho4tUS0RE+k4D9kVEZKiqAq7DGbNyMHAZcAjwljGmuJPrRgb3/wCeA74OXB38nAcGrLUiIqInLyIiMjRZa5cByyIOvWKMeRV4F2cQ/4W7uDR04+/v1tqLg69fNsa4gSuNMTOstavaX7Rw4ULcbjcAixYtYtGiRf3xY4iIDCkKLyIiIkHW2g+NMauBvTo5rSy4f77d8eeAK4G5wE7h5dVXX1W3MRGRPlK3MRERkbYM0Nk0niuD+/bnmOA+0O8tEhERQE9eBsyTD/+DhqoaRk0Yy7CxYykuGkZeXh7OdP8iIhKLguu3TAUe7uS0/wJNwLeAf0cc/2Zw/35/teeJh/9BQ2UNoyaMCdaSYvLy8nG5dO9RRIYmhZcBEAgEWPZxKddd72HESC/jxm1l7PgWJo9tYkqxm+LCQoZNnMTwSZPJzc1VoBERiQJjzP3AeuBDnJnG5gFLgK3An4LnjAPWApdaay8FsNaWGWP+AFxkjKnGWaxyPnAxcK+1dk1/tM9ay/JwLSll3LhtjB3fwsSxTUz2GIYV5FM8bjzDpkyloKBQgUZEhgSFlwHg8/k4aP+JTBi+mRVr/GzYmMLyD9P55xM5AIwb18y4CSuYPPk9Jnhq8NRWU9jUjAdDUUYmOQX5uIuKcXk8uIqKnL3Hg0lJifJPJiKSUD4BjgLOBDKA7cDjwFJrbWnwHAO42bmb9aVADfALYDHOgmvX4MxY1i9aWlo4cP8JjB++hY/a1xILY8e1MG78Z4wb/zHjR9QzvKGSwvoGCq3Fk5JKfm4eScH6EbmZ3FyMgo6IxCljbWfdeoc2Y0w2UF1dXd3rQZZ+v5+y8jJKSkrY/uU2Pv34S5avbGL9+hTWfpFCRYWb8ROamTTZ2UaPaSG9vpb8TZvI37TZ2W/cTFpVFa6cnNYwE7kvLMSVlYXJyMCkp2MyMiC4N5H7yNfBGW9ERLpSU1NDTk4OQI61tiba7Yk3/VVLysvLKPGWsGP7dj79ZBvLP25i/YYkNm5I4cttSYwY6WPS5GYmT2li/IQWMkwTuVu2krd5M/mbtpC/aTPZ27fjMsapGxE3x1weD67CQkxm5q7rRruvw3UmLU1hSES61F+1ROGlE/1RcDri8/koLSulxFvCF19s5803Slm+vJm1a1IoK3XCzJSpzew2vYnhI3wYA+mBAIX1DRSUV5C/dRv569aRvGkzAa8Xmpp63oiUlLZFaVf7Ls7pMiRlZCgoicQ5hZe+Gaha4vf7Ka8op6SkhC1bd/Dmm14+eL+BL1Yns3VLEiNH+Zg8pYlJk5uZMLGZ5GRwW0t+SwsF1bUUlHjJ27yZ7HXroaSEQGkpBHo510Bqauehp5MA5ArVkm5eR3KyuluLxCGFl0EwUAWnIy0tLZSWlvLFmm289NJ23nyzmhXLwe8zTJvexPTpTUyZ1kR6euufV1ZmFsXFxRTl5VOUmYUnPZ00nx/b0ICtrw/vify63Xs92dPc3LsfLjm585CUmYnJzsaVnY0Jbq6cnNbXkcdDr7OyFIpEBonCS98MZi3x+/1UVFSwceN2Xnl1G2+9WcmKFT6+3OZm4qRmps9oYrcZTRQW+sPXuN1uPIUeioqKKc7Px5OVTX5KKq6mpo5rR/vXkbVmF+919LrXNcXl6jjkBGuJyc52eiO0rx3BY21qSuR5qikiA0rhZRAMZsHpSFNTE+++t5l/P7WJV16pZOVKH6NGNTNjZhOz5jTi8fh3uiYnO4fi4mKKi4opLh5GcVExqamp/dIe6985GLUJN70NRrW1BGpqsMGtu3f+TEYGJhhydgo4eXm48vLCe1deHiY/v/V1aJ+c3C//bUQSmcJL30S7lgQCAdat38G/n9rA8y94eeftRtLS/Ow2vZHpM5wnM+1/b3e73RQWepxaUlREcVExBQWF4UU2+0O4pnQUgLoRlnZ6XVvrbDU1rTWltha6+XuOSU9vDTJZWU4tyc3duZZ08Nrk5eHKzVVNEemEwssgiHbBaa++3scLL2zjscfW8+wzZeTkWGbNaWTqtCpGjHS6l3UkNzeX4qJhFBcXM6yomKKiIlJS+ifQ9DdrrVOEIsJMZLAJVFfvdGync2pqsFVVBCoqwOfr9PuZjIyOQ01eHq78fGcrLAz3Bw/3C9eAVxlCFF76JtZqSSBg+fDDcp54Yj3PPLOdDRsamTvXMm23KiZPqSd5F3PDuFyu1ic0wa2wsH8DTX+zgUD4JtlOtaPdjbNAR8erqghUVhKorMRWVXV5c81kZOz65llhYcebx+MEJnWFkwSn8DIIYq3gRPL7LW+/VcaTT27hiSe2AAEWHpjK/AXNpGd4qa2t7fT6/Lz84BMaJ9QUeYpITrA7RtZap2gFC0+gstJ5XVHR4bHw64jjuyxUbjeugoKdQs1O+6IiXMOGOVtm5uD+BxDpJwovfRPLtQRgy5Z6/vXPbTz+xBaWfVjOPvtkstfeMHlqNTXVpbT4WnZ5rcvlorCwMBxmioqK8RQW4nYn3mSm1lonBLWvHxHhpqM6EqisJFBe7tSUXf3OlZTUabhxeTy4iotxDRuGe9gwXMXFmH7qVSEyWBReBkGsF5wQay3Ll1Xy8CObeejBTRQWpnDEESM48KupuFwVzuw0JTuor6/f5WcYYyjIL2jT5cxT6CEpKfEKUHdZa51iVFbmbKWlrfvI1+32tHRc6E1WVjjIuIcPby1Cw4bhGj68zWtXRsYg/7Qiu6bw0jfxUksAvN4mnvrXVh57bAvvvVfOdw8byfcOK2DKtBbKy72UeEvwlnpp2cW/cxAMNAWFOz2hGcr1BJxucoGKCmyopkRuoRrSwfFd1pS8vNa6ERlsQnUm4rVqisQChZdBEE8FJ8Tvt7z2mpcHH9jEk09uYd68fI4+ehw//NEojKuJkpISSrwllJTsYEfJDhobG3f5WS6Xi4KCAoqLhjEs+JQm1rsIRFvozly4EJWUENixA/+OHQSCm3/79vDrQFlZh58TCjru4cNxjR6Ne9QoZxs9Gldw7x4xQmv/yKBQeOmbeKwlANu3N/LwPzbxwAOb2L69gSOPHMtRR49j9uxcKior8HqD9cRbgtfbdaBx6knkE5qhfYOsO9rUlMha0lFt2bHDebrTAZOdjXvkSKd+BDfXyJGttWXUKFzDh2P05yEDSOFlEMRrwQlpbPTz9NNfcv/9G3njdS+HHz6GU06ZyLw98gHnH8Xa2lp2lOwIB5oSbwlNnUy9HOrz7EwGMDCDOIcS29JCoKSktQBt3962GH35Jf6tWwls2eJMitCOq7i4baAJFaIxY3CPH497zBgFHOkzhZe+ifdaArBqVTUPPriRBx/YRF5eMj//+USOPmYcOTlOd2NrLZWVlRFhxtl3GWjyC4JPaJx64vEUKdD0gW1qIuD17hRqAtu349+61aknW7fi37Zt5zGhLpdz0ywUZkJ1Zdw43OPGkTR+PK4RIzTeU3pN4WUQJELBCdm2rYF77lnPXXeup7g4lVNOmcRPfjqGzMy2RcJaS3V1NSXeHa1PabwlNHcypaXL5cLjKRrQWWmGOmsttrLSKT5btoQDTagY+bdsIbB1685PcozBNXIkSePHO2Fm/HinEI0f7xwbO1b9pqVLCi99k0i1JBCwvPRSCbffvo4X/7eDH/1oNIsWTWKPPfN3OtdaS2VVpRNkSpzuZl3Vk8guzKFuZ55CT8KNyYw2GwgQ8HoJbNvWWkdCwSZisxUVbS9MTnZujkUEmtBr97hxzg0z/VnJLii8DIJEKjghfr/luee2c/vt63jzjVKOPnosZ5w5hYkTs3Z5TagAOWHGCTVer7fLQZye4DSbRcFZzhRoBp5taMC/bRv+TZvwb9yIb8MG/Bs34t+wwdk2bwZ/2ym2XSNGtIaZyZNJmjKFpMmTcU+Z4sysphlwhjyFl75JxFoCTreye+5Zz513rKOwMJXTTpvEkUeNJS1t1//OW2upqq4K1pGS8Biazp74G2PIz8936onHmTGzyFNEip4qD7hAbW24nvhD9WTjRnzBfWDbtrYXGINr1CiSJk926khwnzRpEu5Jk3Al0N9/6TmFl0GQqAUnZMuWem65ZS133bmOAxYWcfZZU9ln3+79shoIBKisrAg+mfFSUrIDb6kXXydTE7cPNMVFxRQq0Awq6/M5d9QiAo0vFGzWr8e/aVObGdZMbm6bMJMUDDfuyZOd6T0VbIYEhZe+SfRa4vdbnn9+O3/58xpWrKjk1NMmceqpk/B4uvdU13niX9VaT4LdzjoLNAB5eXk7BZq0tLT++JGkm2xTE/7Nm9uGmvXr8a1di3/NGgIlJW3Odw0b1ibUuCdNcurKtGm4nH9jJIEpvAyCRC84IbW1Pv523wb++MfVFBamctbZU/nRj0bjdvfsF9OdAo23hNIePqFRoIku29SEb/16/GvW4PviC3xr1uAP7Tdu3DnY7LYbSdOnkzxjBkkzZpA0fTru8ePVJzrBKLz0zVCpJQArV1bxx5u+4IkntnDEEWM485dT2G23nv9S2tqF2QkyoS5nnU0yA5CTk0NRsBtzaCxNerpm2oqWQHU1/rVr8a1ZEw40vuAW2Lq1zbmukSOdejJ9OkkRm2vYMN0oSxAKL4NgKBUccO6ePf30Nq695nPKK5o5//zpHHnkGJKSev+LqBNoKp3uZj0MNOFpNosVaGKBbWpyntQEw4zviy/wffYZvlWrCGzfHj7PpKfjnjbNCTTTpzuhZsYMkiZNUl/oOKXw0jdDrZYA7NjRyK23ruWvt61l4YFFLFkyndmz8/r0maFJZkJdzbzBWc7q6us6vS4rM4uiotZAU1RURGZGpn4hjrJAfT3+deucevLZZ/g+/TS82Yi16kxeXuuNsmBNSZ49G9fo0fozjDMKL4NgKBYccArEyy97ufz3q9i6tZ7zzpvOMceOIzm5f+6mtwaaiD7PPQ00cbCy81ASqKjA9+mntKxahW/VKqcArVrldEMLSUkJF53kOXNInjOHpDlzcHs80Wu4dIvCS98M1VoCUFfn469/XcsN169mwd4FXPDbGeEZL/vve9TtFGhqajv/a5qRnuF0NQtP3VxEdpZWuY8F1loCW7fSEhFmfJ9+iu+zzwjs2BE+z+TnO/Vk9mySQvuZM7UgdAxTeBkEQ7nghLz2mpcrLl/F2rW1XLx0d446amyPu5N1R4eBpjsLoRUWUlw0LCLQFCTkys7xKlBbG34641u5kpYVK2hZsaLNkxrXyJHhMBMKNElTp2IUTGOGwkvfqJZAQ4OfO+9Yx3XXfc6cuXlceunufX4S0/n3a3BqSUSgqaqu6vSatNS0iEDj7HNzchVoYkigvNy5SfbRR7QEN99HH2Hrgk/fjME9ZUrbUDN3rjOzpv4co07hZRCo4LR64/VSfvvbj6it9fH7y2fxrW8NH/B/CAKBQHiWs54HmtATmmEKNDHIX1JCy4oV+IJhpmXFCnyffhped8Ckp5M0axbJc+eGt6RZs3Bl7XpWPBk4Ci99o1rSqrHRzx23r+Oqqz7lkEOGs/R3Mxk/fnDulDc1NYXHzni9TqipqKzo9JqUlBSKPEXBCQGcupKXl4dL4/pihg0E8K9fHw4yoVDjX7MmfI7Jy2t7k2zuXJJnzMBogodBlZDhxRjzY+AoYD5QDGwCHgeuaP9DGmO+AvwO+AqQDKwDLrfWPtTF93AB5wGnAsOBz4FLrbWPdXCuCk4Eay1PPbWNCy/8mOKiNK64YhYL9i4c9Db0ZmXnyEDjrOxcqEATY2xTk9P1LBRoli+nZfny1nUGQnfU5s1rE2rcw4dHt+FDgMJL36iW7Ky6uoUbbljNLTev4dhjx3H+kundnp2sPzW3NFNaWhqsKU6gKa8op7PfjZKSknYKNPn5+erGHGMCtbX4Pv64TU3xffQRtr7eOcHtdsbRRAaaOXNwFxdHt+EJLFHDy9s4geWfwBZgHk5A+QzY11obCJ53KPAE8ADwMNAMzACqrbX3dPE9LgcWAxcAHwBHAqcA37XW/qfduSo4HfD5Avztvo1cdtlK9tnXw5VXzmbMmOjN5tLrQFNQSHGxAk0ss9bi37wZ3/LltCxbFg40/g0bwue4hg1zgkxEqHFPnqxuZ/1I4aVvVEt2bceORq64fBUPP7yZxefuxplnTiElJbpPNXw+H6VlpXhD0zaXllBWVkYgYrbF9txuN4WFHoo9ReFJAVRTYo/1+/GvXdv2JtmKFQS2bAmf4xoxojXQzJ5N8syZJE2bpqc0/SBRw0uRtdbb7tjxwL3A16y1LwaLwFrgAWvt2T38/GJgM3CltXZpxPH/AUXW2tntzlfB6UR9vY9rrvmcW29Zw1lnT+Wcc6aSmhobvzBaa8NjaJyZzrofaCJnOVPxiU2Byso2T2dali/Ht3IlBP98TXq6MzvNzJkkzZzpFJ+ZMzWNcy8pvPSNaknXVq+u4dzFy1m7ro7rr5/LN74RW09U/X4/5eVl4aczJaUllJaW4m+36G8kl8tFQUEBxaF1aIqK8RR6SNasizEnUFa2U6DxrVoVrim4XLgnTWpdFiC07bYbrgxNxd1dCRleOmKMmQ6sAo631v7NGHMScCcw1lq7uYefdRxwHzDVWvtFxPETgbuAidba9RHHVXC6Yd26Ws49dwWrVlZx7XVzOfTQkdFuUofaBprWcTQ9CjRFxXg8CjSxyDY3O93OQoVn5UpaVq1qc0fNZGQ40zfPnOnMfBYKNePGKdR0QuGlb1RLuu/pp7ex+NfLmTEzl2uumcPEibE7zi0QCFBRUdFaT0q9XS4FYIwhPz8/2N0s+JTG4yElZfC7zEnnbHMzvs8/b51Jc+VKZ/KZ1avD4zMxBvf48c5Nsoj1zpKmTsWVN3ATUsSroRReTgNuAfay1r5vjLkL+D5wHHAVMB34ErgD+L21dpe3QYwxVwJnA+k24gc3xiwA3sHpOvZ0xHEVnB549tnt/OpXy9httxz++Mc9GDUqPdpN6lJvA01BQUG7Wc4KSUpSoIlFgaoqfKtW0bJypVN8Vq6kZeVKAtu2hc8xmZkkTZsW3txTpzqvp0zBpf/3FV76SLWkZxob/dx442puunE1Z509lV//elq/TdU/0AKBAFVVVXhLS5zJZoITBDQ3N3d6XV5eXrtAU0SauinFJNvS4qxNE1oaIFRfPv8cIv6cXUVFJE2d6tST0DZlCkmTJ2PSY//3o4EwJMKLMWYUsAxYYa39evDYM8CBQBNwGc64lUOA84E/WWvP6eTz/gp8z1o7vN3xycAXBJ/uRBxXwemhpiY/V175GbfduoZLLtmdk38+EZcrvqYntNZSWVWJ11vCjpKeBprIWc4UaGJZoLKybaj57DN8n3+Of+NGiPh30TVypFN0QuEm+No9fjxmiPz5Krz0jWpJ72zcWMcZp3/Itm0N3HbbfObvVRDtJvWKtZbq6mon0IS6nXlLaGxs7PS6nJyc4MQAwVDjKSZDXZRilvX58K9d6zytWb3aWch59Wp8q1e3uVmGMbjHjGkbaqZOJWnSJKcXQGriPoVL+PBijMkCXgZGAgustVuCx58Dvg782lp7fcT5twAn44xd6XAyd2PM7ThPV0a0Oz4FWM0uwsvcuXPDs4gsWrSIRYsW9dvPmag++aSK0059n9RUFzffMp9p0+K7YEcGmpKS1mmbO7ub5nK5KMgvCC+Apv7O8cE2Njp31UIFKGJvy8tbT0xOdorNpEkkTZzYdj9hQkLdWVN46RuFl96z1vLQQ5v5zbnLOfLIsfzukt3JzIz/mwbWWmpra9sEGq/XS119XafXZWZmhieZCQWazMxMrWES4wI1NfjXrAmHmfD2+efYqohfWY3BPXo07okTcU+c6NSUiRNJmjAB98SJuIqL4/rPOqHDizEmDfgPMBc40Fr7ccR7D+LMEDa73fEf4kyrvJ+19s1dfO5VwFmo29ig8Pstt9y8hssvX8UFF8zgF6dPjrunMJ2x1lJVVeVMCNDNQBPq71xcVExRaBCnp4iUlJRBbLn0VqCsbOdQs24d/rVrsTVt/x12jRjhhJuJE3fax1sBUnjpG9WSvistbWLxr5fzzjtl3H333nxln8Gdpn+w1NXV4S31tpm6uaa28//l0tPTw4GmyFNEcVEx2dnZcfVvzFBlrSVQWuo89V+3Dv/69U5NWbcO37p1bZ/Y4IzbjAw17gkTnGAzbpyzEGdubC+qmrDhxRiTDDyJ0zXsEGvt2+3evxCnu9gsa+0nEcd/BDwG7NP+mohzQjOXTbHWrok4fgJwNxqwPyDWrKnlhJ+9Q05OMrffsVdcjIXprdZA0zqGxlvqpampqdPr8vLyw32dQ3fTUhP40XGisdYSKCtzugwEw0zkPnLSAHDG2LjHjw8XnMh90tixuEaOjKmpnhVe+ka1pP88+eRWzjzjA046eSIXXjgjbsbC9EVDQ8NOgaaqusMOJmGpqanhiWZCgSY3xn+xlZ3ZhgZ8GzaEw4x//frW1+vWYevaPqkz2dlOLdnVNmoUJoq9PxIyvAQXkHwI+B5wqLX2fx2cszvwMXCutfbaiOO3AcfjdBur3cXnh6ZKvsJae0nE8ReAYdbaWe3OV8HpJz5fgKuu+oxbbl7DDTfO44gjxkS7SYOmTX/niAGcXfV3zs3JpaioqPWOWlER6WmJG/wSmW1sdApQRKjxb9yIf+NGfBs3tu2OBpCU5HQdaBdswvsxY3BlDs6q5KDw0leqJf1r+/ZGTl30Hjt2NHHPvQvYbbecaDdp0DU1NYUDTWg9morKik6vSU5OdmpK+Km/s7imSzMtxiVrLQGv1wk0mzfj37TJqSubNoW3QGlp24uMwTVy5E6Bxj1yJO5Ro5z3Ro7EDFBvkEQNL7cApwGXA/9u9/aWiHEvdwM/xVnA8kOcAfvnApdZa38X8Xk+4F5r7ckRx0Izjv02eO1PgVOB71trn2rXHhWcfvb+e+X87IR3WLBXIX/68x5kZcV/3+XeCPV3bp3hzClC9Q31nV6XnZ0dXtE5FGw0gDP+BWprWwtOqPgEw41/0yb8W7dCu/UkTG6uU3RGjcIV3Lf/2lVc3C9TQCu89I1qSf+z1nLH7etYuvQTfve73Tll0cQh/1ShuaWZ0lJncc3QzbLyinI6+z3P7XbjKfSEu5wVeYo02UwCCdTXE9i8GV9EoGm/0UFXd5fH49SRyFATqjEjR+IaNQqXx9Pj+pKo4WUDMG4Xb18SCibGmBTgYuBnwDBgA/AXa+1N7T7P4oSXEyKOuYElwCnAcOBz4FJr7aMdtEcFZwDU1fk4+6xlvP1OGQ89tA8zZ+ZGu0kxo7autnVV5+Adtdq6Dh8khmkAZ+KzPh/+bdtaA82WLQS2bsUfsQW2b98p4JDCOETwAAAgAElEQVSUhHvEiDbhJlyQRozANWIE7tGjceV0fuda4aVvVEsGzurVNRx15FvMmJnDzTfvSXa2JkSJ5PP5KC2LCDTeEsrKyggEAru8xhhDQX5Ba6ApKtJaNAkq1OU5sG2bU0u2bXNqS/Dr0PFASUmbWTgBSE5urSMjRpD63e+SefLJHX+joIQML7FGBWdg3XvPepYs+Yirrp7DcceNj3ZzYlZ9ff1OM9JU11R3ek1GesZOXc6yszSAM5FZv5/Ajh2tYaZ9uAnu208skHHSSeTdeWenn63w0jeqJQOrocHPOWcv4/U3SnnwwX2YNUs3xDrj9/sprygPBxqv10tpaWmni2sC5OXm4fEUBW+SOaEmPV1P/ocC29JCYPv2nUJN6MaZ/8svSfvBD8i57LJOP0fhZRCo4Ay8jz+u4qij3mK/fT3ceNM80tNjZ5ByLGtobAgWHm9wHE0JVVWdD+BMS0sLD9wMPaXJydEAzqEmUFPjFJ4vv8T/5Ze4x4whdf/9O71G4aVvVEsGx9/+toHzfrOCK6+cw/E/Gx/t5sSV1sU1veGJZrxeL41NnY/NzMrMCs+aGRpHk5WVpboiHVJ4GQQqOIOjpqaFU099nw3r63jk0f0SejaygRQ5gDP0lKarAZwpKSmts9EUO9M35+XlqfBIGwovfaNaMnhWrarmiCPe4JvfGM7V18whKUmD0XurzdjMiFBTV9f5WjShG2WR3c7yclVXROFlUKjgDB5rLVdd9Rm33bqWhx/el70WxOdKyrGmubk52N85NHWzt8sBnMnJyW1XdS4qJj9PM9IMZQovfaNaMrgqK5s59pi38fst9z+wDwUFWkerPzldmSOe0JR6u3zyn5yc7HQ5C4YZj6eIgvyC8ALgMjQovAwCFZzB969/beW0U9/n2uvmcvTRu5q7QfqipaWFsrJSSkq9eEtKKCktoby8vNMBnElJSeEZaUIznanwDB0KL32jWjL4/H7Lb5d8xFNPbePRx/ZjxoyhN53yYGpqagrfKAt1OevOTGeFBYUR3c6KKSwoJDmK65DIwFJ4GQQqONHx8cdV/PjwNzj8x6P5/e9n4XLpUfNA8/t9lJaVtZnprLSstNNA43a7KSz0OHfSiosp9hRTWFiA260pNhNNooYXY8xBwEsdvFVlrc3r4tpdFc951trl7c5VLYmS++7bwPnnreDOuxbw7W+PiHZzhpTQTGelpV6nK3Opl7KyUvztZ0WMYIwhPz+/bbczT5EWbU4QCi+DQAUnekpLmzjix28yanQ6d965F6mpusM/2FpnpGkdQ1NaVorP59vlNS6XK3wnLTQxgKfQozUD4twQCC+/BN6LeMtnrX2/i2stcA9wW7u3PrLW1rc7V7Ukit5+q4yf/ORNLrlkd048aUK0mzOk+f1+KiorwhPOhGY7a2npfKaznJycNoFGa5zFJ4WXQaCCE12NjX6OP/4dKsqbefSx/cjN1aPkaAsEAlRUVIQHcJZ4Syj1ejudYjNyzYDQGBqPx0NKsvqhx4shEF6+bq19oYfXWuBya+2F3ThXtSTKVq+u4XuHvcYxx47jwgtnaPB4DLHWUlVdFV4KIDSOpqGhodPrMjMy23Q5K/IUkZ2tJQFimcLLIFDBiT6/3/LrXy3n1Ve9PPXvAzQTWQwKTbEZ6m4WCjbNHazaGyk/P59iT3H4KY1HXQNilsJLh9cqvMSZHTsa+f73Xmfu3Dz+/Jc9NBNZDLPWUldXG7xJ5oSZUq+XmtrO//lJTU3tcKYzTTgTGxReBoEKTmyw1nLddZ9z6y1reerfBzB9ugZexjprLdXVTqCJXFyzqzUD8nLznDtpoYkBPEWkpaUNUqtlV4ZAeCkBPEAl8CxwvrV2UxfXWqAcyAL8wNvAUmvtax2cq1oSI2prfRx15Fu4kwwPPbQPaWnqkhxPGhoawk9mQotsVlZWdnpNUlISRR5nhrOi4CKbBQWFmnAmChReBoEKTmy5774NXHThxzz17wOYPbvTsbQSg6y11NTWBBfV9Iaf0nTVNSDc19lThMfjobDQQ3aWugYMpgQOL/OAY4BXgGpgHvBboAVn4H1JJ9f+Dfg3sA0YB5wLzMB5ivNyu3Ozgeq5c+eGf2FatGgRixYt6u8fSbqhpSXASSe9i7ekicce34/MTI3Ji2etSwK0jqEpr+h8Bs3w+MyIxTULPYXqzjzAFF4GgcJL7Hnkkc386pxlPPnk/uw5X2vBxDuna0BduMtZaBxNV4ugpaamUlhYiKfQE9yKKCgo0BSbAyRRw0tHjDF7AO8CV3anS1jEddnAJ8Bma+3+HbynWhJD/H7Laae+zxdf1PCvpw4gJ0f/diQSv99HWVl5OMx4S71dTjgDzs2ywoJCCgoKg/sCCvLzNYtmP1F4GQQqOLHpX//ayv+d9gGPProv++zriXZzZADU1dc5BSei21lXfZ2NMeTm5uEpLMRTWERhoVN4crJz1N+5j4ZSeAEwxqzCCSHf7OF1NwMnW2tT2x1XLYlBgYDlnLOX8e675Tz9n4VazDLBBQIBKisrwmNovN0cn2mMIS83j4KCAgoLCp3akl9IXp7G0vSUwssgUMGJXc89t50TfvYODzy4DwcdVBzt5sggCC2CVlpa6uzLSikvL+vyTprb7SY/L5+CgkIK8guCd9IKyM3NVeHppiEYXj4FNlprv9XD624BTrTWprU7rloSo6y1LDn/I55/fgf/fWYhxcUaYzeUWGuprqnG6/WGa0pZeTlVVZWdLrAJTtez/Lx88vLyyM8vID8vj7y8fPLz8jX5zC4ovAwCFZzY9vLLJRx91Fv84+F9OeCAomg3R6IgNNNZaZm3Taipra3t8tpQ4cmPCDShUKN1adoaSuHFGDMfeAf4vbV2aQ+uy8HpNrbeWntgu/dUS2KYtZalS1fyn6e38dzzB+kJjODz+aiorHDCTFkZZeVllFeUU11d3a3rMzIygsEmn/x8J9Dk5+WRPcR7Aii8DAIVnNj3v//t4Pjj3uGJJ/Zjwd6F0W6OxIjGxkbKK8opryinotzZl5eXU1vXdagByM7KJi8vz9ly88Ovh2oXtEQNL8aY+4H1wIc4M43NA5YA9cAe1tpSY8w4YC1wqbX20uB1i4FpODOVhQbsh459rf2MY6olsc9ay/nnfcRrr3n57zMHal0x6VBzSzPl5U49KSsvo6KinIrKCmpqarp8UgPOTbO83Dxyc3ODWx65Oc7r7KzshJ8BTeFlEKjgxIf//OdLFp3yHk/9+wDmzcuPdnMkhjU1NQXvprUGmoqKcqprunc3zeVykZOTS15ubrB7gBNqcnPyyMzMTNhgk8DhZQlwFE74yAC2A//FmfL4y+A543ECziXW2t8Fjx0GnI8TVnJxZip7A+dpzbsdfB/VkjhgreWsXy7jo48q+ffTC8nK0hNY6R6fz0dVVRUVlRVUVFZQWVlBRYXzuqsxNSHGGLKzs4NhpjXUhPaJMCGNwssgUMGJH48/voWzz1rGf59ZyMyZudFujsSZ5pZmKioqqKyspLKygsqqSiorK6morKClpaVbn+FyucKFJycnl5ycHHJzcsjJcYpPPPeBTtTwMlhUS+JHIODMQrZhQx3//NcBpKcn9p1wGVjWWhoaGoJPaCrDwaaquorq6mr8fn+3PysjPYOcnByys7PJzs4hJ7h3vs6Oi2meFV4GgQpOfHnwwU0sOX8FL718MBMmZEa7OZIAwoWnMhhsgqGmsqqCqqqqHhWe1NTUYKDJJSc7JxxwsrOyycrOiunCo/DSN6ol8cXvt5xwwjvU1fl5+OF9SEpKzCeqEl3WWmpra6mqrqKqqiq8r652Xjc1NfXo89LS0pwgk9U22IRep6amRn19NIWXQaCCE39uuXkNf/7LF7zyysF4PPF7p1tiXyAQoLaulsrKymCxqaY6eDetV4UnNY2s7CwnzGRlB4tQcMvOIiMjet3SFF76RrUk/jQ3B/jB919nwoRM/vyXPaL+S58MPY2NjVRWBetLMNzU1NRQXVNNbW1tp4twdiQpKYmsrCyyMrPIzMxyXmdlkZWZSVZmNplZmWSkZwzo33WFl0GgghOfLrzwY15+qYRnnztQKydL1DQ1NbUJNZHhprqmuseFxxgTLDahUJNFZlYWmRmZZAX3GRkZAzLgU+Glb1RL4lNNTQtfO/hlvv+DUVxwwYxoN0ckLBAIUF9fR3VNTTjQ1NTUUFNTHTzWsy5pIS6Xi8zMzLYBJ9OpMRkZmWRlZpKRkdnr8TcKL4NABSc+WWs5+aT3KK9o5tFH99Ujf4k5gUCAurq64B00p/jU1NZSU1NDba1TiLo71qa9jPQMMjMzg1tWsBC1fZ2Wlt6ju2sKL32jWhK/tm9v5MCFL3L++dM58aQJ0W6OSLeEujxHBpu6ulpq62qprXX2dXV13ZohrSMpKSlkZGSSmeHUG+d1JjNnzOx0fKfCyyBQwYlfLS0BfviD1xk9OoNbbt1Tj/wl7jQ1NVFbW0tNONzUUBvc19TWUFdX1+OnNyEul4vMjMxg0cngqwceTEZGxi7PV3jpG9WS+LZ6dQ2HfO1lbrl1Tw49dGS0myPSLwKBAPUN9dTV1rUNNcF96FhPnuCcfMLPB6WWqE+NJKTkZBcP/WNfvnbwS1x99Wecd970aDdJpEdSU1NJTU2lsLDj9YsCgQANjQ3U1dUFt1pqg/vQsdq6WhobGzu8NhSCAA45+OsD+rOIxLOpU7N59NF9+cEPXueZZw9k9uy8aDdJpM9cLhdZmc4YmGEM6/Acay2NTY3U1tZSX19HXV09dfV1wdd11Nc7X4ee4qSnpw9K2xVeJGFlZSXx+BP7s/9+/2O33XL4/vdHRbtJIv0m/PQkIxOKdn2e3++jrt65u1ZXXxsMNXXU1dZS11BPU2MjKSmxO9OZSCxYsHch198wjx8f/gavv/E1iovTot0kkQFnjCE9LZ30tHQ6KzTWWpqbmwetl4vCiyS0UaPSeeSRffne915j/PhM5szRHTMZWtzuJGdq5uycaDdFJK4deeRYPv20mp8c8SbPPncgqalaA0YEnJAzmGuZaSSzJLz5exVw40178OPD32DHjp270IiIiHTH0qUzGTY8jdN/8WGvBzuLSN8ovMiQ8JOfjOHY48ZzxI/fpKmp59MHioiIuFyGu+5awEcfVXLjjauj3RyRIUnhRYaMiy6awfARafzqnOXRboqIiMSpzMwkHn1sP66/7nNeeaUk2s0RGXIUXmTIcLkMd9yxF6+86uW++zZEuzkiIhKnxo7N4O579ub4495h27aGaDdHZEjpcsC+MWZTLz7XAodaaz/pxbUiAyYnJ5l//GMfvn7Iy8yZk6cB/CIi0iuHHDKMU0+bxNFHvcXzLxxEcrLuB4sMhu7MNjYa+A/g7eZnuoBjAc29KTFp5sxcrr9hHkf+9E3eevsQ8vL0V1VERHru/POn8+475Sw5/yOuvW5utJsjMiR0d6rkS62173bnRGNMEnBc75skMvCOPHIs77xdxkknvcejj+6LyzU4c5OLiEjicLkMd9+zgK/s/QJ7f6WQI44YE+0miSS87jzjvAjY3N0PtNb6gtds7W2jRAbDVVfPwVvSyE03acYYkVhijNnUi22jMWb3aLddhp78/BQeemgfzvrlh6xfXxft5ogkPKN5ynfNGJMNVFdXV5OdnR3t5sgA2LChjv32/R9PPXUAe+yZH+3miMSkmpoacnJyAHKstTUD/f2MMQF61115L2vthwPWsF5SLRkabrxhNY89tpkXX/qqxr+IdKC/aonCSydUcIaGf/xjE5dcspJ33/06WVnd7UkpMnREKbx8pYfdlZuB+QovEi2BgOV7h73GHnsWcOmleggo0l5/1RLdGpAh76c/Hcu++3j41TnLot0UEXGou7LEHZfLcOddC7j3nvVa/0VkACm8iAA33DiX118v5ZFHuv37kogMEGvt5dbaL3txzY6BapNIdwwblsZfb9+Lk058l7Kypmg3RyQh9Ut4McZMMsZ80xgzqT8+T2SwZWcn87e/7c3ZZy1j40YNuBQRkd755jeH86MfjebMM2OuB6NIQuhTeDHGuI0xdwP3AIcDdxtj7jLGaN5ZiTt7zi/g7HOmcsrP3yMQ0FgwERHpnUsvm8XHH1fpab7IAOjrk5fzgRJr7QHAD6y1C3Fmhzmnzy0TiYJf/WoaDQ1+br1lbbSbIiIicSo93c1ddy7gV+csY8eOxmg3RySh9DW8HAv8xRgzDnAZY8YAN6NFKiVOud2GO+5cwGWXrWTNmtpoN0dEdkHdlSXW7bWggBNOnMAvfvEBmtlVpP/0Nby4gAuBR4Fs4LHg1+4+fq5I1Eybls35509X9zGRGKTuyhJPLrxwBuvX1XH//Zui3RSRhNHX8FIFXGat3QuottYuAC4FBnwdAJGBdOYvp2AM/OmPX0S7KSLSlrorS9xITXVz190LOO83K9i6tSHazRFJCH0NL5cA9xtjhgGvG2OKgb8Dv+1zy0SiyOUy3H7HXlx55aesXq0sLhJD1F1Z4srcuXksOnUSZ5+ttcRE+kOfwou19mngeuBZYEZwf7219pV+aJtIVE2alMWSJdM5Xf2VRWKJuitL3DnvvN349NNq/vlPraMq0ld9XufFWvuktXautXaatXaetfaf/dEwkVhw+hlTqK31cd+9G6LdFBFxqLuyxJ20NDc337wn55y9jOrqlmg3RySu9csilSKJyu023HzLnlxwwcd4vVotWSQGqLuyxKWFC4v4+teHc/FFn0S7KSJxTeFFpAvz5uVzzDHjOHfx8mg3RWTIU3dliWd/uHI2jz++hXffKYt2U0TilsKLSDdcvHQmb75Zygsv7Ih2U0SGPHVXlnhVUJDCNdfO4bTTPqClJRDt5ojEpS7DizHm4J5sfWmMMebHxpjHjDEbjTENxpjPjTF/MMZkR5wz3hhjd7HldeN7uIwxS4wxG4wxjcaYFcaYw/vSbkl8mZlJ/PFPe3DG6R/Q0OCPdnNEpB8YYw7aRS2p7OHnLAle9/pAtVUSx09+MoYRI9K4+S9rot0UkbiU1I1zXgBCUy3tahEwG3zP0rcZXxYDm3D6Lm8B5gG/A75qjNnXWht5m+IPwL/aXd+dAZuXBb/PBcAHwJHAI8aY71pr/9OHtkuC+9a3RjB33gauvfYzLrpoZrSbIyL955fAexFf+7p7oTFmIk49KenvRkliMsZw3fVzOfirL3HkUWMZNiwt2k0SiSvdCS/ghILHglvdwDWHw6y13oivXzHGlAP3AgcBL0a8t85a+3ZPPjw4sHMxcKW19trg4ZeMMZOBKwGFF+nU1VfPYcFez3PcceMZPz4z2s0RGdKMManAadbam/r4UZ/2tJ5EuAW4H5hG92uqDHG77ZbD8ceP54Lffswdd+4V7eaIxJXujHn5Kk5oORx4CDgJcFtrX+lo60tj2gWXkNDdsFF9+eygbwIpODPTRPo7MMsYM6EfvocksLFjMzjzl1P4zW9WRLspIkOCMcZjjDHtjqUbY34NbMAZvB8VxpijgT2AJdFqg8Sv314wgxde2M47b2vwvkhPdBlegqHkZGA4cBpQDDxrjNkUHI8yfYDbeGBw/2m7438wxviMMVXGmH8ZY2Z147NmAk1A+46mK4P7GX1opwwRv/71NFYsr+R//9PgfZGBYIxJNcbcZIypBXYAZcaY/wu+dyywDrgGp5vxt/rhW95vjPEbY8qMMQ8YY8Z2o435wA3Ab6y15f3QBhlicnKS+f3lszn77GUEAloIWaS7uj3bmLW20Vr7gLX228BY4CbgO8Anxpg/D0TjjDGjcBYfe8Fa+37wcBNwG3AqzlOhxcAs4M1uBKkCoNLuvFx6ecT7Ip1KS3NzzbVzOOecZZotRmRgXAycCbyJE1KeB24yxvwJuA9nocrvW2v3ttY+34fvUwVcB/wcOBhnTOQhwFvBbsaduQZYDdzTh+8vQ9wxx4wlJcXFPXevj3ZTROJGb6dKLsN5XL8BZ5B+fj+1J8wYkwX8E2fg5Imh49baL621p1lrH7fWvmatvR1YGGzHBV19LK2TD7Q/vksLFy5k/vz5zJ8/n7/+9a89+jkkMR122EjGjsnQbDEiA+OnwM3W2m9Ya8+31v4U58n/6ThBZra19qm+fhNr7TJr7WJr7VPBXgY34jzJGYYziL9DxpgDgOOB/+vgZtguqZZIe8YYbrxpHkuXfkJlZXO0myMSF3o0uNAYsx9wHHAEkIoTLg7FKSb9xhiThjOT2ETgQGvtls7Ot9ZuDk5R2dWot3Ig3xhj2hWc/Ij3d/Lqq6+SnZ3d0VsyRDmzxczjqwe9yFFHj6W4WLPFiPSjMcAT7Y49DtyBsyDlgP2WZ6390Bizms7ryW3AncCWiCn6kwB38OsGa21T+4tUS6Qj8+bl8+1vj+Dqqz/jiitmR7s5IjGvO+u8TDbGXGKMWQu8ijOjymJguLX2GGvts+2mMO4TY0wyzgQBC4DvWGs/7u6ldPxUJdJKnNA1qd3x0FiXVd1tp8i0adkceeRYLv+9/tqI9LNkdp76PvR1RxO79Leu6sl0nCdBFRHbfsBXgq//b6AbKIll6e92564717NpU320myIS87rz5GU1UI1z1+vnwMbg8eKO+gRba9f1tjHGGBfOlJNfAw7t7tSVwcGV+7Hznbr2ngGagWOASyKOHwt8Yq1Vp1Ppkd9eMIPZs57h9DOmMHWq7qiK9KNRwTVUQtwRx9ssItmXutOeMWY+MBV4uJPTvtrBsRtx2ngmO08KI9KpUaPSOfW0SSy9+BPuvmdBtJsjEtNMV911jTGRT1W67Ntrre31IpXGmFtw7mZdDvy73dtbrLVbjDHX4TwxegvnDtw0nGkqc4G9rbWfR3yeD7g3OFta6NiVwNk4C2F+iNO3+lScwZ9t+lAbY7KB6urqaj3ql1265prPePfdch55ZN9oN0VkQNTU1JCTkwOQY63tzmLAfRKsO7san7jT8d7WHWPM/cB6nFpQibMw8hKgHtjDWltqjBkHrAUutdZe2slnvQwkWWv37+A91RLpUk1NCzNnPMM//7U/8+b1+1Bikajrr1rSnScvJ3Z9Sr/5dnB/ATsPvr8E+B1O16//A04AsoFSnMUrL4kMLkFuWu/WhVwA1AJn4Uz//Dnwk/4Y/ClD0xlnTGHW7s/wxuul7Le/J9rNEUkEg1V3PgGOwnlakgFsx+llsNRaWxo8x+DUkd5OcCPSLdnZyVxwwQyWnP8R/31mIe2WNxKRoC6fvAxlulsm3fX3v2/ktlvX8OprB6vgSMIZ7CcviUa1RLqrpSXAvHnPce21c/jWt0ZEuzki/aq/aonuJIn0g6OPHktTU4DHHut0YjwREZFdSk52ccUVs1hy/kf4/bq5LNIRhReRfuByGa68ajYXXfixFq4U6SNjzIvGmN16cL4reM2UgWyXyGA47LCRZGUl8cgjm6PdFJGY1J2pklVERLrh4IOHMX58JvfduyHaTRGJdwfhjGnsLtOLa0RikjGGSy7dnUsvXYnPp5thIu11Z8D+QaiIiHTLJZfszlFHvcUxx44jLa3XE++JCDxpjNlpocdOqI+NJIyvfrWYkSPSuf/vG/nZCROi3RyRmNKd8AIqIiLdsmDvQmbPyePOO9Zx+hl6+CjSS/f28rrSrk8RiX3GGH53yUxOOvFdjjp6HCkp6uUvEtKd8KIiItIDS5fuzve/9xonnDiBzMzu3h8QkRBr7WBO0S8Sk/bfv4ipU7O55+71LDp1UrSbIxIzNFVyJzS9pfTWUUe9xZ575rN4cbeHi4nELE2V3DeqJdJb779XzhFHvMmqT79Nerq6Ikt801TJIjHs4otncsP1q6mubol2U0REJE7N36uAeXvk89fb1ka7KSIxQ+FFZABMn57DN74xnJtuWh3tpoiISBxbunQm1177GXV1vmg3RSQmKLyIDJALL5rBzX9ZQ3l5c7SbIiIicWrOnDz2P6CIm29eE+2miMQEhReRATJpUhY/+MEorr/+82g3RURE4thFF83kxhvUFVkEFF5EBtSS387gjtvXUVLSGO2miCQcY0yqMeasaLdDZKDNmJHDIYcM409/+iLaTRGJui5nGzPGHNyTD7TWvtinFsUQzRAj/eHss5aRkuLi6mvmRLspIr0SzdnGjDEeoMxGFCtjTDrwC2AxUGytjelpmFRLpD988UUNCw94kVWffpv8/JRoN0ekx/qrlnQnvARoXXTS7OI0G3zPxnoR6QkVHOkPX37ZwLy5z/Hhsm8wcmR6tJsj0mODHV6MManA1cDJQDpQBVxgrb3FGHMscA0wDHgPuNBa+/xAt6kvVEukv5zy8/cYOSqdSy7ZPdpNEemx/qol3V1BrwZ4LLjV9fabiQxFI0ak87OfjeeqKz/lpj/uEe3miMSDi4EzgReAD4EJwE3GmBnA6cBqYJG19qnoNVFk8F1w4Qy+svcLnHnmFDye1Gg3RyQquvPk5UDgeOBwnDEyTwD3JlL3sF3R3TLpL15vE7N2f4Z33j2EceMyo90ckR6JwpOXNcAz1tozIo6dBNwBPA8cZq2Nm2n8VEukP51x+gdkZSVx5VXqiizxZdAWqbTWvmKtPRkYDpwGFAPPGmM2GWP+YIyZ3ttvLjJUFBWlsujUSVx26apoN0UkHozBuVEW6fHg/vp4Ci4i/e2CC2dw770bWLeuNtpNEYmKbs82Zq1ttNY+YK39NjAWuAn4DvCJMebPA9VAkUSxePE0nntuOx9+UBHtpojEumSc7sqRQl97B7ktIjFlxIh0fnnWVJYs+SjaTRGJit5OlVwGbAhuFsjvp/aIJKycnGSWLp3J4sXL6aq7pogwyhgzMbQBEzs6HnxPZEg5++ypfPB+Ba+9piwvQ0+PwosxZj9jzK3Al8C9QC1wKHDcALRNJOGccOIEqqpaePzxrdFuikisexT4ImL7LHj8yXbHtfCFDDnp6W5+f/kszl28gkBAN8NkaAeA8XMAACAASURBVOlytjFjzGSccHIsMB54FWdu/UestepwKdIDbrfhuuvnsuiU9zj00BGkpSXMzOIi/enEaDdAJNb99Kdj+Mufv+Dvf9vI8T8bH+3miAya7q7zUo0zWPJvwMbOzrfWruu31kWZZoiRgfLjH7/B/PkFnH++5ruQ2BfNRSoTgWqJDJQP3i/nhz98g+UrvklBgRaulNg22ItUhnT5bFKLVIp0bf36Ovb5ygu8+dbXmDgxK9rNEemUwkvfqJbIQDr7rGU0Nvq59bb50W6KSKcGc5FKPb4X6WcTJmTy68XT+OWZH/LUvw/AGBPtJomISBy65NLdmTvnWd54vZT99vdEuzkiA67L8GKtvXcwGiIy1Jx99lQefGATDz+8mZ/+dGy0myMiInEoNzeZa66dw+lnfMB7732d5OTeTiQrEh/0N1wkSpKTXdx885785twVVFRozT0REemdww8fzdgxGVx//efRborIgFN4EYmir+xTyPe+N4rzfrMi2k0REZE4ZYzhz3/Zkz/e9AUff1wV7eaIDCiFF5Eou/yKWbz8cglPP70t2k0REZE4NXZsBldcMYsTT3iH5uZA1xeIxCmFF5Eoy8lJ5o47F/CL//sAr7cp2s0REZE4dfzPxjNmbAaXX74q2k0RGTAKLyIxYOHCIo48ciynn/4BXU1fLiIi0hFjDLfcMp+77lzHu++URbs5IgNC4UUkRlxy6e58/nkN99+/KdpNERGRODV8eBo33rQHJ5zwLjU1LdFujki/U3gRiRFpaW7uvXdvfnPuctasqY12c0REJE4dfvhoFi4s4swzPtTTfEk4Ci8iMWTu3DwuuGAGxxz9Fo2N/mg3R0RE4tT1N8xl+YpK7rxjfbSbItKvFF5EYswvTp/MhIlZ/PJM3TETGUjGmIOMMbaDrbKL68YZY/5pjNlojGkwxpQaY142xnx7sNou0pWMjCQefnhfli79hHfe1vgXSRwKLyIxxhjDHXfsxbvvlXP7X9dFuzkiQ8EvgX0itkO6OD8LKAUuBL4DnAzUAv8xxvxoANsp0iNTp2Zz623zOeqot9ixozHazRHpF0nRboCI7CwrK4lHHtmXgw58iVmzctlnX0+0mySSyD611r7d3ZOttStxAkuYMeZpYD1wIvB4/zZPpPcOO2wk779fzjFHv80zzy4kKUn3rSW+6W+wSIyaMiWb2+/Yi6OPfpsvv2yIdnNEpBPWWh9QBWh6J4k5F188k/R0N+cuXhHtpoj0mcKLSAz7zndGcMqiifzoh29QV+eLdnNEEtX9xhi/MabMGPOAMWZsdy4yxriMMUnGmOHGmIuAqcBfBrapIj3ndhv+9ve9efGlEv540+poN0ekT9RtrBdaWlrYsmULjY3qPyq9k5aWxujRo0lOTu7y3CVLprNubR3HHP02jz62rx75i/SfKuA64BWgGpgH/BZ4yxgzz1pb0sX1VwO/Dr6uBY601v5vVycvXLgQt9sNwKJFi1i0aFEfmy/SfXl5KTz11AEcuPBFRo/J4Ec/Gh3tJon0itFsRrtmjMkGqqurq8nOzg4fX79+PdnZ2RQWFmKMiV4DJS5ZaykrK6OmpoYJEyZ065qWlgA/+P7rjB2bwc237Km/d//P3p2HRVmuDxz/PuyriKCIG4obiAoaqLiguOSSYZZLZXXUjNJWO52y8mib5inzmHWsNNNfZYWllftOoqUJKJLijrihiKDsyPb8/hgk3EGWGfH+XNdcDO887/ve78wwD/c8m6hWGRkZ1KpVC6CW1jrD2PFUJaVUR2AnMENrPfkWZRsB9YtvTwAhwDCt9cqryl23LhHCGHbvvsDg+7aydGk3ugS6GDsccReprLpEvsK9Dbm5uZK4iNumlMLFxaVcLXeWlmb8EBZIVNQF3n9/fxVGJ8TdTWu9CzgEBJSh7CmtdZTWeqXWegSwA5hZ1TEKUREdOjiz4KsAhg//nb/+SjN2OEKUmyQvt0kSF1ERt/P+cXS0ZPmK7nzzdYL0WRaiaingdrolRAEtKjkWISrdgAHufDSrA4Pvi+DAgXRjhyNEuUjycgdKSEigbdu2131sypQpbNy48ab7v/XWW8ycWblfDsbExLB69eqS35cvX86MGTNuuk/pWGfPnk12dna5zjl9+vTyB3oDixYt4rnnnqu041UVd3db1q3vxaefHuaLz48aOxwhahyllD+Ggfd/lnM/M6A7IH+Y4o4wYkRj3n2vHYMGRnD0aKaxwxGizGTAfg3zzjvvGOW8MTExREVFMWjQIABCQkIICQm56T6lY509ezaPPfYYdnZ2ZT7n9OnTeeONN67ZrrVGa42ZWc3MzZs0sWPtup706/sblpaKsU96GjskIe5ISqnFGNZm2QVcxDBg/3XgNPBJcRkPDAnJO1rrd4q3vQXUAX4HzmIY8/Ik0Al4tFovQogKeOKJplzKLWRA/y2sWduTFi0cjB2SELdUM/+7uwsUFhby1FNP4ePjw7333ktOjmEdkNGjR/PTTz8BsHr1ary8vOjevTsvvPACgwcPLtk/Li6OXr164enpyZw5c657jvHjx+Pv74+Pjw9Tp04t2R4ZGUnXrl3x9fWlU6dOpKWlMWXKFMLCwvDz8yMsLKykJSMtLY2mTZtSVFQEQHZ2No0bNyY/P78k1jlz5pCYmEhwcDDBwcEsWLCAiRMnlpxv/vz5vPzyy1fENmnSJHJycvDz82PUqFEkJCTg7e3NhAkT6NixIydPnixz/BkZV44ZW7VqFYGBgZw/f/52Xppq4enpwNp1PXnvvTjm/u+IscMR4k61F8Mg+4XAOuAlDAtMdtZaX/4AUIA5V9aXu4C2GBKc9RhmHcsFemitf6ie0IWoHE+FNue117zp1/c39u6VMTDiDnD5W2q5XXsDHAGdnp6uS4uLi9PGdOzYMW1ubq53796ttdZ6+PDh+ptvvtFaa/2Pf/xD//jjjzonJ0c3atRIx8fHa621fvjhh/V9992ntdZ66tSpOjAwUOfm5urk5GRdp04dnZeXd815UlJStNZaFxQU6J49e+o9e/boS5cu6WbNmumdO3dqrbVOS0vT+fn5euHChfrZZ58t2bf07yEhIXrz5s1aa61/+OEH/eSTT14Rq9Zae3h46OTkZK211pmZmdrT07MkpsDAQB0bG3tNfPb29lc8J0opvX379grFv2zZMt29e3edmppapteiIirjfRQfn6m9Wq/S06bt00VFRZUQlRDXSk9P1xjGgDhqE/hsvtNuN6pLhDAl3313XDdq+KuOikwxdiiihqqsukS6jVUCK8sfK/2YefnDb/p4s2bN8PPzA+Cee+4hISHhiscPHDiAp6dnyVS8jzzyCPPmzSt5/L777sPa2hpra2vq1atHUlISjRpdOef7kiVLmDdvHgUFBZw5c4a4uDiUUri7uxMQYJiIp3jKu5saOXIkYWFhBAcH88MPPzBhwoSblre3t6d3796sXLkSb29v8vPzadeu3S3P4+HhQZcuXW47/vDwcKKioli/fn2ZrssUNGtmz+bwYO4btJULqXn85wNfzMxkMgkhhBDl88gjTbC3N+f++7ey4KtODBzobuyQhLguSV4qwa0SjapgbW1dct/c3Lyk29hlWt98opyr9y8ouHL19mPHjjFz5kwiIyNxdnZm9OjR5ObmorUu90xZISEhvP7666SmphIdHU3v3r1vuc+4ceOYPn06Xl5ejBkzpkznsbe3r1D8np6exMfHc+jQIfz9/ct2cSbA3d2WjZt6MXzY74wY8QeLFnXGwUH+tIUQQpRPSEhD6tW1YcSIP3jtNS+efa6lsUMS4hoy5qWG8vLyIj4+vqRFJiwsrFz7p6enY29vj5OTE0lJSaxZs6bkuImJiURGRgKGBYcKCgpwdHS8ZuzIZQ4ODnTq1IkXX3yRwYMHl6wwXdrV+3fu3JmTJ0/y3Xff8cgjj1z3uJaWluTn51dK/GBouVm2bBlPPPEE+/btK8vTZDLq1LFizdqeONe2IrhXOKdOlW/mNiGEEAKgS6ALWyJ6M29+PC+9uJuCgiJjhyTEFSR5qaFsbW2ZO3cuAwYMoHv37ri5ueHk5FTm/X19fenQoQM+Pj6MHTuWbt26AWBlZUVYWBjPP/88vr6+9OvXj9zcXIKDg4mLiysZsH+1kSNH8u233zJy5Mjrni80NJSBAwcSHBxcsm3EiBF069YNZ2fnG+7Tvn17Ro0aVeH4L2vdujWLFy9m+PDhHD16Z814amVlxrz5/jz8SBN6dN9MVGSqsUMSQghxB2rWzJ6IiN4cOpTB0Ad+JzU1z9ghCVFC3ap7UXVSSg0DHgH8gXrACQwzv0zXWl/3a32l1BdAKLBYa/1YGc5hBrwGPI1hesuDGKbAXHqdso5Aenp6Oo6OjiXb9+/fj7e3dzmvrvplZmbi4OCA1ppnn32Wli1bXjGLl6kbPHgwEydOpE+fPsYOpUpU5ftoxYpEng6N5O232zLuKU9ZVFVUSEZGxuVxYLVu9FksbuxGdYkQpi4/v4jXJ8WyfPlpFi8OJKBTHWOHJO5glVWXmFrLyytAIfAGMAD4DBgPbChOOq6glOoKjALKszzsu8BbwKfAQGAH8KNSalCFIjdB8+fPx8/PDx8fH9LS0nj66aeNHVKZXLx4kVatWmFra1tjE5eqdv/9DdgcHsznnx/lscf+JD39+t3rhBBCiBuxtDRj5kd+fPChHw88sI1P5hy+5ZhaIaqaqbW81NVaJ1+17Qng/4A+WuvNpbZbAruBxRhaUbbdquVFKVUPOAnM0FpPLbV9E1BXa93+qvJ3dMuLMG3V8T7KySnklX/GsHlzEosXB9Lxnut3wRPiZqTlpWKk5UXUBPHxmTz6yA4aNbbls8/8qVvX+tY7CVFKjWx5uTpxKRZZ/LPhVdv/hWHhsI/KcYr+gBXw7VXbvwXaKaWaleNYQpg8W1tz/jf3Ht5+px2DB0fw7rv7yMuTwZdCCCHKx9PTgS0RwbRo4cg9HdezbNkpY4ck7lImlbzcQM/in/svb1BKNQcmAxO01uUZReYDXAKuXpL88tRSbW43SCFM2YgRjdkZ2Y+oyFS6Bm4kJuaisUMSQghxh7G2NmfGjPaEhQUyefJfPP74DlJSLhk7LHGXMenkRSnVEHgH2Ki1jir10OfAMq11eDkPWQe4qK/tK5da6vFrBAUF4e/vj7+//xULPQpxJ2nUyI5ffu3OCy+24r5BEUye/BdZWQW33lEIIYQoJbCrK1FR/XCrZ4Nv+3V8tSCeoiLTGYYgajaTTV6UUg7Ar0ABMKbU9seAAAyD+8t9WOB6f103nYopIiKCqKgooqKiCA0NvY3TCmEalFI88URToqL7ceJ4Nu3brWXp0lMyAFMIIUS52NlZMPMjP1as7MHChcfoGbSZ3bsuGDsscRcwyeRFKWUDLAc8gf5a61PF2x2AWcB/gFylVG2lVG0M12FZ/LvlTQ6dCjira+eNdS71+F2nV69eREUZGrYGDRrExYvG7VIUExPD6tWrS35fvnw5M2bMuOk+U6ZMYePGjQDMnj2b7OzyLdI4ffr08gd6A4sWLeK5556rtONVBXd3W77+pjMLF3XmvXf3MaB/BLuipdIRQghRPh06OLMlojdjx3oSErKV0f/4k4SELGOHJWowk0teipOPpUAnYJDW+q9SD7sCdYHpwIVSt8bAiOL7993k8PsAa6D5Vdsvj3WJq2j8d7rVq1dTu3Zto8ZwdfISEhLCpEmTbrrPO++8Q9++fYHKTV601hQV1dwB7kFBddkZ2Y+HHmrE0KHbeOSR7Rw6JJNJCSGEKDszM8WYsc3YFzeQZp4OdOm8kVf/tUfGw4gqYVLJS/FaLouBPsAQrfWOq4qcBYKvc0sCNhbf33aTU6wF8jCsDVPaY8BerfWxil5DdUhISMDLy4tx48bRtm1bRo0axcaNG+nWrRstW7Zk586dAGRlZTF27FgCAgLo0KEDv/76KwA5OTk8/PDDtG/fnpEjR5KTk1Ny7KZNm3L+/HkSEhJo27ZtyfaZM2fy1ltvAYaWmokTJxIUFIS3tzeRkZE8+OCDtGzZksmTJ1835vHjx+Pv74+Pjw9Tp5bMUk1kZCRdu3bF19eXTp06kZaWxpQpUwgLC8PPz4+wsLCSloy0tDSaNm1akkxkZ2fTuHFj8vPzGT16ND/99BNz5swhMTGR4OBggoODWbBgwRULc86fP5+XX375itgmTZpETk4Ofn5+jBo1ioSEBLy9vZkwYQIdO3bk5MmTZY4/I+PKf/xXrVpFYGAg58+fL/PrW90sLc0Ifbo5cfsH0qGDM716bmb8M1HEx2caOzQhhBB3kFq1LJk61YeYPf3JySmkrc9a/v3vv0hOliRGVB4LYwdwlf8Bw4FpQJZSqkupx04Vdx/77eqdlFK5QJLW+rerthcA/6e1fhJAa31OKfVf4HWlVAawCxgJ9AaG3E7AEdsiOH/+ejM8V4yra12Cugfd8PEjR47w448/Mm/ePAICAvjuu+/Ytm0by5cvZ/r06fzyyy9MmzaN3r1789VXX3Hx4kU6depE3759+eKLL7CzsyM2NpbY2Fg6duxY7visrKyIiIjg448/ZsiQIURHR1OnTh2aN2/OxIkTcXFxuaL8tGnTqFOnDoWFhfTp04fY2Fi8vLwYOXIkYWFhBAQEkJ6ejp2dHe+88w5RUVF8+umngKEbFoCTkxO+vr5s2bKF4OBgVqxYQf/+/bG0/Lun4AsvvMCsWbMIDw/H1dWVrKws2rdvzwcffIClpSULFy7kiy++uCK2GTNm8OmnnxITEwMYksODBw+ycOFC5s6dW674bW1tS477888/M2vWLFavXo2zs+mvr2Jvb8Grr3oxbpwn//3vQbp13US/fvV55V+tad/euK1xQggh7hz169vwyacdmfhyK2Z9dJC2Pmt47LGmTHy5FY0a2Rk7PHGHM7XkZWDxzzeLb6W9DbxVzuOZF99KexPIBF4E6gMHgRFa6xXlPDYA588nczrx9O3sWiHNmjWjXbt2APj4+NCnTx+UUrRr146EhAQA1q9fz/Lly5k5cyYAubm5nDhxgoiICF544QUA2rdvT/v27a97jpsJCQkBoF27dvj4+ODu7g6Ap6cnJ0+evCZ5WbJkCfPmzaOgoIAzZ84QFxeHUgp3d3cCAgIALi9cdFOXk4Xg4GB++OEHJkyYcNPy9vb29O7dm5UrV+Lt7U1+fn7J83YzHh4edOnyd+5c3vjDw8OJiopi/fr1ZbouU1KnjhXvvtuOV17xYt68owy+bysdOtRm/IQW3HtvfczMbjq/hRBCCAEY1ob59H/38Mabbfh49iE6dlhPv3vrM2F8C7p2c+HaIchC3JpJJS9a66aVuZ/W+pq/Cq11IfBe8a3CXF3rVsZhyn1ca+u/V7Y1MzMr+d3MzIyCAsP0t1prli5dSuvWra/Z/1YfGBYWFleM9cjNzb3u+Uuf++rzX3bs2DFmzpxJZGQkzs7OjB49mtzcXLTW5f7gCgkJ4fXXXyc1NZXo6Gh69+59y33GjRvH9OnT8fLyYsyYMbcsD4akpyLxe3p6Eh8fz6FDh/D39y/bxZkYJydL/vUvL557riXff3ecf0/ey0sv7ib06eb84x9NcXGR1ZWFEELcWoMGtvznA1/eeLMN33ydwFOhkdjZmjNhQgtGPtwEe3uT+ndUmDh5t1TQzbp2GVv//v355JNP+OSTT1BKsXv3bjp06EBQUBCLFy8mODiYvXv3Ehsbe82+bm5unDt3jpSUFBwcHFi5ciUDBgy4rTjS09Oxt7fHycmJpKQk1qxZQ69evfDy8iIxMZHIyEgCAgLIyMjA1tYWR0fHa8aOXObg4ECnTp148cUXGTx4MObmVzesUbK/q6srAJ07d+bkyZPs2rXrutcKYGlpSX5+/hVd0G43fjC03MycOZOhQ4fy448/4uPjc1vPnSmwtTVn7JOejBnbjJ1/pvL550fxar2GgQPdeXRUE/r2dcPCwqSGzwkhhDBBTk6WPPd8SyY824JNm5KYO/cIkybFcv/9DRj1mAc9e9bD3FxaY8TNyX8cNdi///1v8vPzad++PW3btuXf//43YBg8n5mZWTIWpFOnTtfsa2lpyZQpU+jcuTODBw/Gy8vrtuPw9fWlQ4cO+Pj4MHbsWLp16wYYxs2EhYXx/PPP4+vrS79+/cjNzSU4OJi4uLiSAftXGzlyJN9++y0jR4687vlCQ0MZOHAgwcHBJdtGjBhBt27dbjj2JDQ0lPbt2zNq1NVzOZQ//stat27N4sWLGT58OEePHi37E2ailFJ07uLCwkWd2H9gIIGBLrz3bhxNPVby8sTdREelynoxQgghbsnMTNGvX31+/rk7sX8NoH372rz2aiwtW6zizTf/IibmotQn4oaUvDluTCnlCKSnp6fj6OhYsn3//v14e3sbLzBRboMHD2bixIn06dPH2KGUqCnvo8OHM/j++xN8/91xiorg/vsbMPj+BnTv7iotMjVERkbG5bFbtbTWMpd2Od2oLhFCXOmvv9JYvPg4Py8zLJ4cEtKQkCEN6drVReqTGqCy6hJJXm5Ckpc73+VZ1nx9ffnxxx+NHc4Vatr7SGvNX3+lsWJFIiuWJ5KQkMWAAfUZdF8DgoPrUbeujJG5U0nyUjGSvAhRPpfrk+XLE1n+62lOncpmwAB3+vR1o3fveri72976IMLkSPJSDSR5EVWppr+PTp3KZuWKRNauO8u2rck0bWpP795u9O5Tj+7d6+LgIEPu7hSSvFSMJC9CVMzx41msXXOWTZuT2PLbORo0sKVPHzd693Gja1cXate2MnaIogwkeakGkryIqnQ3vY/y84uIikxlc/g5wjefIzo6FS+vWnTp4kLnLi506eKCh4edTJtpoiR5qRhJXoSoPIWFml3RF9i4KYnNm5KIjr6Ah4cdgYGudAl0ITDQhRYtHKQ+MUGSvFQDSV5EVbqb30fZ2QXs2nWBHTtS2LEjhT93pKCUIqBTHfz8auPra7g1aSIJjSmQ5KViJHkRourk5xfxV2wa27efZ/uOFHZsTyEzs+DvusSvNn5+zrRu7SgzmRmZJC/VQJIXUZXkffQ3rTUJCdlERqYSG3uR2D0X2bPnIjk5hSWJTPv2tfHxqYWXdy1ZE6CaSfJSMZK8CFG9zp7NJSbmAnv2XCQm5iJ7Yi5y5kwOPj5O+PrWpm1bJ3zaOuHjU0vWLKtGkrxUA0leRFWS99GtJSXlGpKZ2DT2xFwkLi6Nw4czcXe3wbtNLdq0MVQ+bdo44eXliI3Ntev+iIqT5KViJHkRwvjS0/OJjTUkMvv2pbNvXxr79qVhb2+Bj4+hLvHxcaJtWye828iXZFVBkpdqYMrJi4ODA5mZmUY5d0xMDImJiQwaNAiA5cuXExcXx6RJk264z5QpUwgKCqJv377Mnj2b0NBQ7OzsynzO6dOn88Ybb1Q4doBFixYRFRXFp59+WinHu12m8D66ExUUFHH0aBZxcWnExRkqoLi4dOKPZtK4iR1t2jjRpo2hEvL2rkXLlg6S1FSQJC8VI8mLEKZJa83Jkzklicy+vYY65eDBDNzdbWhTnNR4e9fCq3UtWrV2lMlmKkCSl2ogycv1VfSf/6ZNmxIVFYWrq2uZ97nR9Wqt0VpjZlb2+d8leamZ8vKKOHw4g7i49OKbIalJOJaFu7sNrVo5/n1rbfjZsKGtjKkpA0leKkaSFyHuLJe/JNu3L429ew3JzMED6Rw+nImLixWtWzvSunUtWrc21CetW0t9UhaVVZdI+niH01rz6quvsmbNGpRSTJ48mZEjRzJhwgQGDBhASEgIQ4cOxdnZma+++ooFCxZw7Ngx3nvvvSuOM378eCIjI8nJyWHYsGG8/fbbAERGRvLiiy+SlZWFtbU1GzZsYMqUKeTk5LBt2zZef/11cnJyiIqKYtq0afj6+hIfH4+ZmRnZ2dm0bt2a+Ph4nnrqKQYPHkxiYiKJiYkEBwfj6urKY489xt69e/nvf/8LwPz589m/fz+zZs0qiW3SpEnk5OTg5+eHj48P06ZNY+DAgQQHB7N9+3Z++eUXZsyYUab4N23adMV1r1q1ivfee48VK1aUK5kSpsfKyqy46d/piu0FBUUcO5bF4cOZHDqYQWxsGj/9dIpDhzLIyMinZcu/k5lWrRxp3cqR5i0cqFXL0khXIoQQwpgsLMyKExRHHnywUcn2oiLNiRPZHDyYwaGDGezbl8ayZac4eDCDzMwCQx3S2pHWXo60bOlIi+YOeDZ3wMlJ6pPKJMlLBaW99BL5MTGVekxLPz+cZs8uU9lly5YRExPDnj17OH/+PAEBAQQFBREUFMTWrVsJCQnh9OnTnDlzBoBt27bx8MMPX3OcadOmUadOHQoLC+nTpw+xsbF4eXkxcuRIwsLCCAgIID09HTs7O955550rWi4WLVoEgJOTE76+vmzZsoXg4GBWrFhB//79sbT8+4/2hRdeYNasWYSHh+Pq6kpWVhbt27fngw8+wNLSkoULF/LFF19cEduMGTP49NNPiSl+nhMSEjh48CALFy5k7ty55Yrf1vbvha1+/vlnZs2axerVq3F2di7jqyPuNBYWZrRsaahIBg1yv+KxtLR8Dh/K4OChDA4dyuDXX09z6GAG8fGZ2NiY4+npgGdzezw9HWhe6n79+jaYmck3bEIIcTcxM1M0bWpP06b29O9f/4rHLl7M49DBDA4czODgwQx++ukkR49kcvRoJra25jRv7mCoS1o40Ly5oU5p3sIBV1crabEpJ0le7nDbtm3jkUcewdzcHDc3N3r27ElkZCQ9evRg9uzZxMXF0aZNGy5cuMCZM2fYvn07c+bMueY4S5YsYd68eRQUFHDmzBni4uJQSuHu7k5AQADA5aa+m7qcLAQHB/PDDz8wYcKEm5a3t7end+/erFy5Em9vb/Lz82nXrt0tz+Ph4UGXLl1uO/7w8HCioqJYv359ma5L1ExOTpb4jk2kxQAAIABJREFUB9TBP6DOFdu11pw7d4n4o5kcjc8iPj6TzZuTWLDAcD89vYCmzezx9LQ3JDXFiY2Hhz0eHnbY2clHqxBC3E1q17aiU2cXOnV2uWL75frk6JFMjhw1JDNr154pSWwKC/UVSY1nM3s8mhrqk8aNbbG2ljGbV5MatoLK2kJSVW40Zqlhw4ZcuHCBtWvXEhQURGpqKkuWLMHBweGaPtfHjh1j5syZREZG4uzszOjRo8nNzUVrXe5vA0JCQnj99ddJTU0lOjqa3r1733KfcePGMX36dLy8vBgzZkyZzmNvb1+h+D09PYmPj+fQoUP4+/uX7eLEXUMphZubDW5uNgR2vbY7YWZmAfHxmcTHZ3HsWCb796ezalUiCcezOHkiGwcHC5o0saeJhx0eTexK7jdpbEcTDzvq1JFv2oQQ4m5Quj7p2u3a+iQ1NY/4o38nNn/8kcIPP5zg+PFsTp/OwdXVqviLMXs8mtrR1MOQ3DRpYkeTJnZ35YQ0krzc4YKCgvjiiy/4xz/+QWpqKhEREXz44YcABAYGMnv2bDZv3kxKSgrDhg1j2LBh1xwjPT0de3t7nJycSEpKYs2aNfTq1QsvLy8SExOJjIwkICCAjIwMbG1tcXR0JCPj+uOsHBwc6NSpEy+++CKDBw/G3PzaP6rL+18eY9K5c2dOnjzJrl27iI2Nve5xLS0tyc/Pv6IL2u3GD4aWm5kzZzJ06FB+/PFHfHx8yvaECwE4OFjQvr1h7ZmrXf6W7cTxbI6fyOLEiWyOHs1kc3gSJ45nc+JENoWFmsZNLic2djTxsKdRI1saNrSlYUM7Gja0xdb27quQqptSqhcQfp2H0rTW1764f+/nD4QCQUAT4DywFZistT5WBaEKIWqoOnWsqFPn2h4AYBizmZiYy4kTWSQkZHP8eBZ//pnCkiUnOXEii5Mnc3BxsSpJbBo3tqNRQzsaNrKlUUNbGjW2o25d6xrXzVmSlzvc0KFD2b59O76+viil+OCDD6hf39APs0ePHqxfv54WLVrg4eFBamoqPXr0uOYYvr6+dOjQAR8fHzw9PenWrRsAVlZWhIWF8fzzz5OTk4OtrS0bN24kODiYGTNm4Ofnx+uvv37N8UaOHMnw4cP57bffrhtzaGgoAwcOxN3dnfBww/8NI0aMICYm5oZjT0JDQ2nfvj0dO3Zk2rRpFYr/statW7N48WKGDx/OihUraN68+S2ebSFurfS3bAGdrq2MwDDW5vhxQ2JjSGiy2LPnIomnc0hMzOH06Rzs7c1LEpkGDWxp2MiWhg1sadDwcpJjKy04lecFILLU7wW3KP8w4APMAfYBDYF/A1FKKT+t9ckqiVIIcVexsDAraWHp3v3axwsLNWfO5HA8IZuE41mcOpXN/v3pbNh4ltOnDHVJWlo+DRrYGOqT4qSmYUM7GjW2LUl03NxsMDe/c+oSmSr5Jkx5quSaZvDgwUycOJE+ffoYO5RqI+8jcSNaa86fz+P06RxOn84m8XQOpxNzOH2qOLkpvn/pUmFJcuPewJb6bja41behfvHNzc0Gd3dbXFysKvTNW02dKrlUy0s/rfXGWxQvvV9drXXyVds8gGPAe1rrKVc9JlMlCyGMIje3kMTEHE6dyuHUKUNXtNOncjh1OptTJw11TGpqHvXrG+qL+u42uNe3xa2+De71bUp+r+9uQ7161lhYlH1piqvJVMmiRrh48SKdOnXC19f3rkpchLgZpRR161pTt641fn437L1EVlZBcYKTw5kzOSQl5ZJ0Npd9e9M4ezaXs8W/p6fnU7eudUky41ac5LjXt+He/vVp3tyhGq/uznd14lK87bhSKhlDK4wQQpiEkpkzPW/8OZ+XV8Tp0zmcPZPDmbO5nD2Ty5mzOezYkWKoS87mcvZsDikpebi4WJXUJfVLJTf9B1RfXSLJizCq2rVrc+jQIWOHIcQdyd7eomR9mpvJyysqSWzOJhkqprNJucTFpdOxo7MkL7BYKeUKXATWAZO01ifKcwCllDdQD9hfBfEJIUSVsbIyo1kze5o1s79puYKCIs6du1SS3CSdzeXM2Vz270/nnnuqry6R5EUIIWo4KyszGjc2DOYUV0gDPgK2AOlAB+ANYLtSqoPW+lxZDqKUsgA+B5KBBVUUqxBCGJWFhRkNGhi6KoPx1seT5OU23c40wkJcJmPNhDA+rfVuYHepTVuUUhHATgyD+CeX8VCfAl2B+7TWF25UKCgoqGQGxtDQUEJDQ28rbiGEuJtJ8nIbbGxsSElJwcXFRRIYUW5aa1JSUrCxsTF2KEKIq2itdymlDgEBZSmvlHofw7TJ/9Bar79Z2YiICBmwL4QQFSTJy21o1KgRp06dIjn5mjGbQpSJjY0NjRo1MnYYQojrU8Atm0eVUm8Ck4AXtNbfVHlUQgghJHm5HZaWljRr1szYYQghhKhkxQtQtgKW3KLcC8B7wJta60+qIzYhhBBw+5M1i1uaN2+esUOoEe625/Fuu96bkeei6t3Nz7FSarFS6j2l1INKqd5KqX8Ca4HTwCfFZTyUUgVKqSml9nsYmF1cdrNSqkupW5vKjvNufo0q0932PN5t13sz8lxUvep8jk0qeVFKNVJKfaKU2q6UylZKaaVU0+uUm66UWq+USikuM7qc53lAKbVbKZWrlDqulJqslDK/nZhXrFhxw8cq8kLe7LhVsX9Zy5el3M3K3M5jpvqhU9HX6EY++OCDCu1/O3FV1usvr71xj307+1b0/XaH2wuEAAsxTJH8ErAM6Ky1Pl9cRgHmXFlfDijePgDYftVt7u0EInVJ+crI58mtSV3yt7vtta/osU29LjG1bmMtgBFANLAVuPcG5Z4HYoCVwBPlOYFSqj+wFMN0li9jmBpzOuAIvHa9fRITE284yPKHH37gnnvuue5jeXl5JCYmlie8Mh23KvYva/mylLtZmdt5rCLPY1Wq6Gt0I6mpqRW63tuJq7Jef3ntjXvs29m3LO+3jIzbXgjZpGmt3wfev0WZBAyJSulto4HR5T2f1CXlKyefJxUjdcnf7rbXvqLHNvW6RJnSlK1KKTOtdVHx/XHAfKBZceVxTTmlVAvgMDBGa72ojOfYDaRrrXuW2jYFw5SYTbTWZ0tt98WQJAkhhAA/rfUeYwdxp5G6RAghrlChusSkWl4uJy6VVe5qSqnGgB+GaS1L+wZ4GxiIofvAZfEAp0+flukthRB3rYyMDBo2bAjFn4mi3KQuEULc9SqrLjGp5KUa+BT/3Ft6o9b6mFIqG7juQEtHR0epcIQQQlSI1CVCCFFxJjVgvxrUKf55vRWQL5R6XAghhBBCCGFi7rbk5fKgy+sN9FHX2QZAUFAQ/v7++Pv7m+yMFUIIIYQQQtR0d1u3sdTin9drYald6vErRERESFO/EEIIIYQQRna3tbzsK/7pU3pj8VoydkBcNccjhBBC3JQpzQoqhBDGdlclL1rrE8AeYNRVDz0G5ANrqj0oIYQQ4gaOnzjO4q8XkZmZaexQhBDCJJhctzGl1LDiu5dXxxmolEoGkrXWW4rL9ATqAvWLy/grpTIBtNY/lTrWJsBDa92i1CneAFYqpb4AvsewSOVk4OPSa7wIIYQQxpR8PpkFX61k/hcFJJ6Yzb8mv4lSNxyeKYQQdwWTS16AH6/6fW7xzy1Ar+L7bwM9S5V5tvgGVw68N+eqa9Rary5OkKZiWCE5CZgOTKtg3EIIIUSlqetal64dG/CNzXl++9MCr+W/8O3i71myZAmFhYWYm5sbO0QhhKh2JtdtTGutbnDrVapMrxuVu+pYvbTWTa9zjmVaa1+ttbXWuonW+h2tdWHVX50QQghRdr3uHcjTTxbwxzZXonYe55VXXgFg1KhRrFu3jqKiIlJTrzvXjBBC1Egml7wIIYQQwsDGxoZHnhjEvf0zCPupLgl7/0JrzVdffUXPnj05ePAgQ4YMAeDAgQOkp6cbOWIhhKhakrwIIYQQJsyjiQdPjW2I1rB0vSZmawR2dnbY2Njg7e3Nli1bAFi0aBE7d+4kJyeHpUuXGjlqIYSoGpK8CCGEECauZ3AfxozOYd1aR1ZujiH1XFLJY2Zmhqp8xowZ9O3bl+TkZCIjIwH48ccf2bt3r1FiFkKIqiDJixBCCGHirKyseOIfA+gVnMkPP7qwduFXFBZef6hmkyZNmDFjBmBYI8bMzIzk5GSef/756gxZCCGqhCQvVaioqMjYIQghhKghGjZsxEsvtSAnR7F6ryu/z/zglvuMGDGCNm3aYGVlxYABAwCYNGkS69atA6CgoKBKYxZCiMomyUsVKCgoYM+eGBbOn8e55HPGDkcIIUQN0b1bN0KfhtUrHYnIt+fo55+VaT8nJyfuu+8+AMaPH4+/vz8nT57Ez88PrTVnzpzh0qVLVRm6EEJUCkleqkB2TjZLl27j3fdrsSM83NjhCCGEqCEsLCwY92R/uvXI5aelzoQnJ3Hh/xaV6xgeHh64uLjQuHFjtm/fjlKKTz75hCVLllBUVMSqVavQWlfNBQghRAVJ8lIFajnWonvnJpiba1ZsSiMlJcXYIQkhhKghXF1dmTrVj9QUc35PaMBvEVvIWrjwto7l6OgIwPTp03n88cdJSUlhyZIlKKVYt24dUVFRlRm6EEJUmCQvVaRT9yD69s1k8wZ7/gzfZOxwhBBC1CD3dPRl4st2LP+5Fvtb3cOe+V+QNX9+hY9bt25d/u///g+A3Nxc8vPzuXTpEmPGjLnhBAFCCFGdJHmpIrWdajPkPjfy8hWrI1K5cOGCsUMSQghRQyileObpe+nStYBfltZiz8MjODX5TdLfeqvSunwNGTKEwMBAioqKGDJkCObm5syYMYOvv/4aQMbICCGMQpKXKtSlew9698lk0wYHdm5YZ+xwhBBC1CC2tnb8d1Y3Tp2yZPc+eyJfeZm0adO4OHYsOi+vEs9jywMPPADAU089Rf/+/cnKyqJFixbk5eVx9uxZ0tPTK+18QghxM5K8VKE6dVx4aEg9LqSas2FnKmlpF40dkhBCiBqkVatmTP63G8uWOnFa2RM3Yzo5ixaR0rcvhWfOVPr5XFxccHNzw97enkOHDmFlZcWyZctYsGABAEuWLJEWGSFElZLkpYoF9uhGr95ZbNzkyM6ffjR2OEIIIWqYp0N70qWLOct/rsUhW2uSF35FfnQ0yR06cCkiosrOa2trC8CECROYOHEieXl5rF+/HnNzczZv3swvv/xSZecWQty9JHmpYnVd6zJseF1OnrAk/EguF0+eNHZIQgghahBzc3O+/LIvR49ac2C/NX/k5WC2eRPKyYmU3r3JmDYNXQ2LUVpZWfHll19iYWFB7dq1cXFxQWvNoEGDSE1NpaCgQKZgFkJUmCQv1aBHty4E9cpiU7gTf3z1pbHDEUIIUcPUr+/MrFk+/BRWi8zMQtYfPYzTH39gM2wYGZMnc75HDwoOH662eDp27EiPHj0AmDJlCs7Oznz99de8/PLLABw+fFhmLxNC3BZJXqqBm5sbjz5aj0MHrPhTu3L2V2lKF0IIUbkefbQdXbs7sWq5IxcvXuC36Eicv/8e5++/p+DgQZL9/Mj8+GN0NSYNSim6dOmCUooxY8bw3nvvARAaGsrZs2c5fvw4EVXYtU0IUfNI8lJNevfqSmC3bMLDHdm+fm2VDKQUQghxd1vwZW8O7LfnyGErDh85ROxfsdg+/DD1/voLq549SX/pJc4HBJC3c2e1x6aUwt7eHoDw8HAaNmxIYmIisbGxAHzwwQeclK7VQohbkOSlmri4uDBmjDt7YmzZ16gt8eOfqZY+yEIIIe4ederY8L+5/vwU5kxeHmz7YyunTp/CvGFD6qxahfOSJRQmJXG+SxcuPvMMhefOGTXewMBAnnvuOcCwQKaTkxNbt27lpZdeAiAnJ8eY4QkhTJAkL9WoX79AAjrlsCXcnhj3+qS//rqxQxJCCFHDPPRQM7p2dWPdGieKiopYs2416enpKKWwHT6cegcOYD9xItlffsm55s3JePddirKyjB02Y8aMoVatWnTo0IGnn34agAceeIA//viD7Oxsdu/ebeQIhRCmQJKXalTbqTZPhTZk5592HPVsy4mlP5H1+efGDksIIe5KSqleSil9ndstF+VSStkopT5USp1RSuUopbYrpYKqI+6y+OzzQPbG1uJ4giW5ubmsWrOS/Px8AMwcHXH66CPq7duHdb9+ZEyZwrkWLcj6/PNKXdzydjk4OODt7Q3AqlWr6Ny5M/Hx8cydOxeAZcuWcfDgQWOGKIQwIkleqtl9A7vg63uJbRH27Bs7movPPkvuihXGDksIIe5mLwCBpW59y7DPAuApYAowGDgDrFNK+VVVkOXh6mrNx3P8+WWZGwUFcD7lPBs3b7hiqmKL1q2ps2wZrr//jkXz5qSNH29IYubORefmGjH6v1lYWGBubk7btm2ZP38+AOnp6RQVFZGUlMTYsWMBKCoqMmaYQohqJMlLNXNwcGTCs435fasdJ+3qcO6BIaQOH07u6tXGDk0IIe5W+7XWO0rdom5WWCnlCzwKTNRaz9dabwJGACeAd6oh3jIZNqwRfr5u7PijAQBHjh4hete1l2bVtSsuW7dSZ+1azBo3Ju3ZZ0lq3pzMjz6iKC2tusO+pdGjR+Pt7Y29vT1PPPEEAM899xxhYWEAHDlyRNaTEaIGk+TFCB4YEkhrr0J2/GHHX0Pux6xdO1KHDpUWGCGEuDOEAPlA2OUNWusC4Aegv1LK2liBlaaU4pNPO7J1iyUXL9QGYPuf24k/Fn/dsjb9++O6bRsumzZh0bo16a+8QlKjRqS98AIFR45Ud/i35ODgQK9evQCYNWsWgwcPJiUlhVGjRgGwc+dO9u7da8QIhRBVwaSSF6VUI6XUJ8V9h7OL+x43vU652+5rrJSyU0q9rZQ6VLzvSaXU19c7T1WxsbHh5X+2YMtv9qRczODMnI+x9PUldehQGQMjhBDVb7FSqlAplaKU+k4p1eQW5X2AY1rr7Ku27wOsgBZVEuVtcHe3ZcZ/fFn2U13MlCUA6zas5dwNZhlTSmHduzeumzfjGh2NzYMPkvX555xr1YrUIUO4FB5ukq0aNjY22Nvb4+Liwp9//olSimPHjnHixAmKiooIDQ3l0qVLxg5TCFEJTCp5wfCBPwK4AGy9SbmK9DX+EvgXMB8YBEwGgoBNSimH2w+9fB560B8PD4jcaUtk3F/Yr16Ndf/+pI0fT9rEiTKNshBCVL004CNgHNAbeBfDeJftSql6N9mvDoZ66mqppR43GY8/7kGjhg6cSGgPQEFBAStXryAjI+Om+1l17Ijz//0fbseP4zB5Mnl//EFK794kt21L1qefmmSXstJGjhzJoEGDKCgooFevXlhbWzNnzhz+85//AJCQkGCSiZgQ4uaUKf3hKqXMtNZFxffHYUgwmmmtE0qV8QVigLFa64XF2ywwfON1UGsdcpPj2wIZwAda6zdKbR8ArAEGaK3XldruCKSnp6fj6OhYeRdabMmSPbz4QhyvvZnMPR396N65K+n//CdZc+Zg1a0btRcvxsLDo9LPK4QQ5ZGRkUGtWrUAammtb/4f7x1OKdUR2AnM0FpPvkGZDYCD1jrwqu39gPVAkNZ6a6ntjkC6n58f5ubmgGGF+dDQ0Cq6imudOJFNl84b+N9n9TmV+CcALnVcGPbgMKysytbLTefkkBMWRtZnn5G/cyfK3h7bUaOwHz8eSz+TmKfgli5dukRGRgYuLi4EBASwdu1aLly4wKlTpwgODjZ2eELUaJVVl5hUy8vlxOUWKtLX2AIwB9Kv2n55WsxqfT6GD29P3XoW7ImxIfavWNIyM3H6+GNqf/st+bGxJPv5kf3tt/LNkBBCVBOt9S7gEBBwk2KpXL91xbnU49eIiIggKiqKqKioak1cAJo0sWPq1LbMmplJ2zaGFpiU1BTWrFtT5pm6lK0tdqNHU/fPP3GNjMR25EhyvvmG5A4dSO7a1VBfmcgsZTdibW2Nq6srSimioqJwdXUlOTmZ+HjDOKBXX32V48ePS70rhAkzqeSljG67r3FxlvcN8IJSKlgp5aCU8gE+BPYAm6oo5utSSvHmm+3YtMGBgoIiIrZFoLXGbtQo6u7ejYWXFxcff5yUvn0pkDnthRCiuijgZv+97gOaKaXsrtreBsgDTG90O/BUqCfW1ubs2e1Os6bNADhx8gRbIn4r9z/rVv7+1F6wALfTp6n13/9SlJLCxccfJ6lRI9Jfe42C+GsnBTBVXbt25cknnwSge/fu1K1blw0bNvDoo48CEB8fL+NlhDAhd2LyUtG+xmOAn4HNGLqQ7QUsgX5a62pfnWvEiNbY29uwP86a4ycSOJZwDACL5s1x3bYNp88+Iz86mnPt2nHxuecoPHOmukMUQoi7hlLKH2gF/HmTYssx1BvDS+1nAYwE1mutTfI/XTMzxedf+POf/xyguWc36tatC8DeuL1E746+vWM6O+Pw0kvUO3AAl40bserZk8yPPuJcixakDBpE7sqV6MLCyryMKhUSEoKdnR19+/Zlzpw5ALz77rtER0dz4cIFvvnmGyNHKIS4E5OXG30jpsq4/3vAY8ArQE/gccAFWKOUsr/eDkFBQfj7++Pv78+8efNuI+QbU0oxZYovmzbUQmvYui2CguLB+srcHPtnnqHegQPYjR5N9uefc655c9L++U8Kjh+v1DiEEOJuo5RarJR6Tyn1oFKqt1Lqn8Ba4DTwSXEZD6VUgVJqyuX9tNYxGLouz1ZKjVNK9cHQdbkZMLX6r6TsWrRw4LXXvHn+2VgGDRiMg4NhnprtO/5gX9y+2z6uUgrrPn2os3SpYYD/lCnkx8SQev/9nGvenIz336fwBjOcmSIzMzNcXV0BWLhwIV27diU9PZ2zZ88C8OGHHxIREQFQUmcLIaqHSQ3YL+0mA/bDAD+tdeuryo/AUJm01Vpf9xO4uIvYXmCc1npBqe0tMfRxfklr/XGp7VU6YP+yoiJNG+/l9O1/htZeeQT4d6JLpy7XlCs4coSMt98m5/vvQWtsHngA+2efxapXL5TZnZiHCiHuBDV1wL5S6nXgEcADsAPOYpi8ZarW+kxxmabAMeBtrfVbpfa1BaZhWKyyNoaux69prX+7znmqpS4pq8JCTa+em3nssaYMH1Gbn37+iUuXLqGUYmD/QTT3bF4p59H5+eQuX07W3Lnkbd4MlpbYDhuG3fjxWHXvjlJl/c7R9ERHR1O/fn0sLCzo3r07hw4d4vDhw9jb29OwYUNjhyeESaqRA/bLqCJ9jdsV/4wsvVFrfRjDoH3vygqyPMzMFFOm+hK+qQ5aw67d0aSlXbymnEWLFjh/8w1ux47h8OqrXPrtN1L69CGpSRPSXnmFvF27ZJChEEKUkdb6fa11e621k9baUmvdWGsdejlxKS6ToLVWpROX4u05WuuXtdb1tdY2WuvO10tcTJG5uWLe/ADefnsvGRk23H9fCBYWFmitWbdhLacTT1fKeZSlJbYPPYTrpk3U3b8f+wkTyF29mpSgIJLbtyfrs88ousV0zabqnnvuoWHDhri5ubFnzx6UUoSHhxMRYRi7+uabb8o4GSGqyJ2YvFSkr/HZ4p+dSm9USrXC8M1Z5Xxi34aRIz0oLLDj6BErCgsL2bI14oaJiHnjxtR6/33cTp7E+fvvsezQgayPP+b8PfeQ1LgxF0NDyfn5Z4pSUqr5KoQQQtwJvL1r8eJLrRj/TDT13eozsP8gzMzMKCwsZOXqFSSfT67U81l6eeE0ezZup0/jNH8+ytKStAkTSGrQgIsTJpD/11+Ver7qZGdn+C716aef5pFHHiEvLw83NzesrKz48ssv+fDDDwFITEyULxiFqAQm121MKTWs+G4f4BlgApAMJGuttxSX+QHoj2GxyWPAeAyLVXYtnuby8rGOAMe11n2KfzcHojH0S34PiAKaYFiosi7QXmt9otT+1drU//XXCXwyZzdPjD0JwMD+g2jRvGwLNRelpJD766/krlrFpQ0b0MXfZll4e2PVvbvhFhiIeYsWd3RTvRCi+tXUbmPVxdS6jV1WUFBE926beeaZ5owe04wDBw+wYdN6AOxs7Rj24DCcnGpXybm11uTv3EnW3LnkhIXBpUtYde+O3YQJ2D74IMq6bGvPmLr09HQyMjJo0KAB/v7+rFy5kpycHI4ePUq/fv2MHZ4Q1aqy6hJTTF5uFNAWrXWv4jJl6muslEoAEi7vV7zNBXgDw3oxjYDzwB/AFK31wav2r9YKJz+/iDZtVvPgsCQaNc7Czs6OUQ8/ho2NTbmOo/PyyPvzT/K2bTPcfv8dXbwSspmLC5ZdumAVGIhVly5YduqEmQlVpkII0yPJS8WYavICEBt7kYEDItgZ2Y+GDW2J2bObrb8b1td0dHDkoaHDqjzmopQUshcuJOvzzyk8ehSzevWwGzMGu9BQLDw9q/TcxhAZGcnu3bsJDQ3llVde4amnnqJly5aAYaIAIWqqGpu8mBJjVDgLvozn628OMmzkYQDaeLehT3DfCh1TFxVREBdH3vbt5O/YQd727RTs3294UCks2rb9O5kJDMSiVSuZAEAIUUKSl4ox5eQF4J139rFr1wV+/rkbSim2/7mdqGjD0FCnWk48OPQhHOwdqjwOXVTEpQ0byP7sM3JXrICiIqzvvRe7p5/G5v77UZaWVR5Dddu8eTMBAQHs3buXqVOnsn79eqKjo2ncuDH16tUzdnhCVCpJXqqBMSqcvLwi2niv4ZkJl7C2PQXAAyFDadyocaWep+jiRUPrzOWEZseOktYZ5eyMVefOJcmMVadOmNWumq4DQgjTJ8lLxZh68pKXV0SXzht55V+tefRRD7TWbPtjKzF7YgBwru3Mgw88VDK2ozoUnjpF9oIFZH35JUWnTmHm7o7dk09iN24cFh4e1RZHdcrOzsbOzo53332X4OBgfH19mTp1KrNmzUJrLV3fnAWhAAAgAElEQVS+xR1PkpdqYKwK5/PPjrBi5SkGD4mjoKAAp1pOPDLyUSyr8FsnXVREwcGD5G/fTt7l1pl9+0BrQ+uMj49h3EyPHlj36IF548pNpoQQpkuSl4ox9eQFYFf0BUJCthIVfS/169ugtWZLxG/8tc8wkN6ljgtDhzyIra1ttcalCwq4tGYNWZ9/zqU1awCwHjQI+6efxnrQIJS5ebXGU53S0tJYs2YNDz/8MK+99hqtWrXiySefJDIyko4dO2Jeg69d1EySvFQDY1U4ubmFeLVezYwPXElOMTTdd/TrSLeu3astBoCi9HTyd+4kb/t2w9iZP/5AZ2YCYN6kCVY9ehhu3btj4e0tXc2EqKEkeamYOyF5AXjzzb84ciSDsLCugGFQ/ebwTcQdiAOgrmtdhg55EGsjDaYvOH6c7C+/JHvBAorOnMGsUSPsx43Dbtw4zGv42iq5ubnk5eVhbW1N//792bhxI9u3b+fChQuEhIQYOzwhykSSl2pgzApnzseH2Lo1meEPnyLpXBJKKYY9OJz6bvWrNY7SdEEB+bGx5G3dakhmtm6lKCkJAFWnDtaXZzXr0QPLjh1RVlZGi1UIUXkkeamYOyV5yc0tJCBgA2+91ZaHHmoEQFFRERs3beDgYcN8NvXquTFk8JByTyRTmXR+PrkrVpD9xRdcWr8ezM2xGTwYu6efxvree2t0a0xpkZGRpKen06dPH4KCgvj+++9xdHQkOzub+vWN97+CEDciyUs1MGaFk51dgFfrNSz+rj2x+1ZQVFREbafaPDzikSrtPlYeWmsKjx4tSWYubd1K4WHDRAPK1hbLzp0N3cyCgrDs2hWzauwvLYSoPJK8VMydkrwA7NiewogRf7Br9724uhpaWIqKili3YS1HjhrWgHZ1deWB+4dWexey6ymIjyd7/nxDa0xyMuZNm2L31FPYjR2L+V30D/yRI0do3rw5mzZtYunSpXz22WcsXryYHj160KRJE2OHJwQgyUu1MHaF89FHB4mOTuWf/7Lij+2/A9CubXt6BfWq9ljKqjApqaRVJm/bNvJ374aiIrC0xKpLF6x69cI6OBirLl1QJlDxCSFuTZKXijF2XVJer/5rD2fP5vL1N51LthUWFrJ+43qOHDV8QeVSx4UHQoZW6yD+m9F5eeT+8gtZX3xB3ubNYGGBzZAh2D/zDFa9e9+V3Zr/97//ERISQmZmJlOnTmXJkiWcPn2aOnXqmETiKe4+krxUA2NXOJmZBbRutZoNG4KIO7SRM2cSARgyeAhNmtwZs60UZWQYkpnffuNSeDj50dGGZMbaGqsuXQyJTK9ehmSmhixKJkRNI8lLxRi7Limv7OwC7um4ng8+9OP++xuUbC8qKmLj5g0cPGToQuZc25kHhgytlmmUy6Pg0CGy5s0jZ9EiilJSMG/eHLvQUOzGjMG8bl1jh1ftLl26xLFjx/Dy8mLSpEl07NiRhx56iA8//JDXXntNZjET1UaSl2pgChXO++/v58D+dOZ84sX3S74jPz8fe3t7Hh05yqh9jm9XUVoaeVu3cum338gLDze0zGgNNjZYde36dzLTqZOMmRHCREjyUjGmUJeUV0REMk88voPdMf1xdv77s7ioqIjw3zaXDOJ3+n/2zjwsqvPs/58zM8AARhb3BURAAUFBRZBo3HHfojGm2UzUGG3at2/6a5u8TZomafKmSdNmad+YxCUxrTHGqIm74r4riKICiggIKu4L+6zP74+DiEaUdWYYns91caHPPOecm23u8z335uXFo+MnOeTXJcrKKF2+nJIvvsC4axe4uuI+aRIeL76I68CBTfqmvbCwkM8++4xXXnmFTz75BDc3N2bPns2pU6cICgqSwzIlDYIULzbAERzOzZsmQkPWsXPXEIymM2zdvhWALsFdGTl8pF1sqk+s169j2LmzIjJjTkkBQPHwwLV/f9yGDcMtPh5djx5NMuwvkTgCUrzUDUfwJbXhN/+VTEmJhXnz+9yxfncb5eYPNWfC+Il4eznuPDBTWholX35JyaJFiBs30IWE4PHii3hMm4bG19fe5tmVa9euYTAYaNu2LbGxsSQkJJCTk0NmZiaTJ0+2t3kSJ6K+fIm8G3RwvLxcmPPLYN7/6wm6hYUT0CkAgFOZGaSfSLevcfWAxscH9wkT8ProI1ofOULbK1fwWbECjxkzsOTlUfCHP3C5Z08utm3L9SefpOSrr7CcPWtvsyUSicTpeefd7mzffomNGy/csa4oCgMHDCKyRxQABYUFLF/xA5cvX7KHmdXCpVs3vD7+mLbnz+P99dcovr4U/Pa3XGjfnuvPPINh506a6sNcX19f2rVrh6IoHDx4EC8vL4QQFdGXiRMnkpqaSklJCVlZWXa2ViKRkZf74ihPy65fN9ItbD27dg+lXXuFJUu/pbS0FJ1Ox9QpT+Dr47xPjSznzmHYvBlDQgKGzZsrWjPrQkJwi4/HLT4e10GD0KhKXiKRNAAy8lI3HMWX1IbNmy8y+8Ukkg8Pp3nzOztdCiHYf3A/SYfUeWSurq6MGTWWjh062sPUGmM6epTiL76g9D//QRQUqNGYF17A/dlnm2RtTFXk5OTQrl070tLS+PDDD1m8eDGLFy8mIiKCyMhIhBBNOgVPUn1k2pgNcCSH85e/pJKdVczCr2LIzT3DT2t+AqBFi5Y8PvlxdDqdXe2zBUIIzMeOVYgZ444diNJS0GrV4v/4eFyHDcM1NhalCXw/JBJbIcVL3XAkX1IbZr+YhE6n8K//633P14+kHGHXnp0AaLVaRsSPJCgwyJYm1glrcTFly5ZRPG8epr17wcUF/aOP4vnCC022U9mDWLlyJd26dcPHx4fBgwdz/PhxMjMzcXNzk62ZJVUixYsNcCSHc/OmibDQdWzfMYSuXR9i7749HDp8CIDu4d0ZNHCwXe2zB8JgwLh3b0VUxpSUBEKgeHnhFh+PftQo3EaORNu+/YNPJpFIqkSKl7rhSL6kNty8aaJn1EYWLIxh8ODW99xzMuMEm7duxmq1oigKgwcOIbxbuI0trTum1FRK5s9Xa2OuX0cbGIjHzJl4PPcc2nbt7G2ewyGE4NKlS7Rp04avvvoKnU7HM888w0svvcR7772Hu7s7Op1ORmYkgBQvNsHRHM7//m8aJ08UsuibWCwWCyt+XM6Fi2ou8qgRowgO6mJnC+2L9do1DFu3YtiwgbL167GeV1tL6yIjVSEzejSucXEyKiOR1BApXuqGo/mS2rBuXT4v//dhkg8Px9Pz3u+hOWdyWL9xHWazGYC+sXFE94pulDeuoqyM0hUrKJk3D+P27aDVoh83Do9Zs3AbPhxFq7W3iQ6L1Wpl8eLFPP300yxZsoTt27fz5ZdfsmHDBvr06UOLFi3sbaLETkjxYgMczeEUFJgIC13P5i2DCAtrTkFhAd99vwSDwYCrqytTpzzh0N1ebMmtFLOy9esxrF+Pcc8eMJtlVEYiqQVSvNQNR/MlteX55w7i4+PCPz7qWeWe/Av5rF67CoPBAEC3sG4MGjAYbSO+2TdnZFA8f746N+byZbT+/nhMn47H9Olo/fzsbZ7DYzAYcHNz49VXX2XOnDmUlJQwd+5cPv30U65evYqPj49szdxEkOLFBjiiw3n//XSOHbvJf/7TF4DTWadZt2EtoE48fmzyFFxd5HyUu7HevKnWyqxfL6MyEkkNkeKlbjiiL6kN164Z6Rm1kW+/jaNf/5ZV7rt67Sqr16yisEj9VfHr6MeoEaNxa+SDiIXRSNmqVZTMm4dh0ybQaHAbNQqPF15AP2aM9B/V5MaNG5w8eZLY2Fhmz57N0KFDefTRR/n00095+eWXG2WkTlI9pHixAY7ocAoL1ejLxk0DCQ/3AmDPvj0kl9e/dAnuwoj4kfKP/z5UGZXx9kY/ejT6ceNwGzkSjbeMYkkkIMVLXXFEX1JbfvzxHK+9dpSkpOG4u1cdTSkuLmbNutVcKm+f3MK3BePGjG/0X/8tzNnZlCxYQMnChVjz89G0a4fH88/jMXMmus6d7W1eo0IIQUFBAf/617947bXX+Pvf/45er+ell17iwIED9OzZE1c5tNopkOLFBjiqw/nwwxMcOnSdJUviADW/dNWan8g7mwdAv4f70yuqlz1NbFTcisqUrV2LYc0arJcvg06H64AB6MeNQz9+PLrAQHubKZHYDSle6oaj+pLa8uST+/D39+Svf+1x330mk4mNCRvIzskGwMPDg3Gjx9O69b2L/hsjwmymbO1aNRqzfj1YrbjFx6vRmAkTUORNd40pKCigrKyMVq1aMWrUKJYtW0ZqaiqHDh3ipZdeorS0FHd3d3ubKakFUrzYAEd1OMXFZkJD1rF23QB69FCjA6WlpSz94TsKCwtRFIUJ4ybi11Hm4tYUYbFgOnCAstWrKVu9GnNqKgC6bt3Qjx+Pftw4XGJjZbGmpEkhxUvdcFRfUlsuXSqjd69NrFjRnz4x958zZrVa2b13NylHjwCg0+kYPmxEo2qlXF0seXmUfPUVJQsWYMnNRdOqFe7TpuH5wgvouna1t3mNmpycHHJzcxkwYADDhg3jnXfeITQ0lHXr1vHkk0/a2zxJNZHixQY4ssP56KOT7Nt3le+/f7hi7dLlS/ywYhkWiwW9Xs/Ux5649UsiqSXm06crhIxx504wm9G0aoXbmDHox4/HLT4eTbNm9jZTImlQpHipG47sS2rL0qW5vPdeOgcODMPN7cEPc1KOprBrz+0p9jF9YomJjnHKFGdhsWDYtImSefMoW7UKLBZcBw5UB2BOnoyi19vbxEaN1WpFCMHZs2dZvHgxf/zjH3nzzTfp2bMnEyZM4NixY4SHh8smAA6IFC82wJEdTkmJmdCQ9axa/QhRUbdrM9JPpLN5awJQXsA/6TFcXRt3kaSjYL1xQ23DvGoVZevXI27cADc33OLjcZ80Cbdx49C2rLqIVSJprEjxUjcc2ZfUFiEEjz22l4gIL956K6Jax2TnZLMxYQMmkwmAwM5BxA+Nd+p6Bkt+PiVff03J/PlYsrJQfHzwePZZPF54AZfwxjcHx1HJy8vDzc2NZs2aMXToUPbs2cO2bdu4efMmkyZNwmQy4eLiYm8zmzxSvNgAR3c4//z0FNt3XGL58n53rO/as5MjKWqI3t+/E+NGj5NPIOoZYTJh3L1bFTIrV2I5cwa0WlwHDsR90iT0Eyei7dDB3mZKJPWCFC91w9F9SW3Jzy8luncCa9Y+Qs+ePtU65tq1a6xdv4YbN28A6kO2MaPG4uXl1ZCm2h1htWLcto3iefMoW7ECTCZc4uLwfOEF9FOmyAh+A3D48GGKi4vp378/3bp1Y926deh0Oo4cOcLYsWPtbV6TxGbiRVGU3FqcVwBjhBDHa2WVg+DoDqe01EJY6DpWrOhPr963HYfVamXdhrUVRZI9uvdg4COD7GSl8yOEwHT4MGUrVlC2YgXm9HQAXPr2VYXMo4+iCw62s5USSe2R4qVuOLovqQvffJPDPz89xd59Q3Fxqd5DMoPBwIaEDeTmngFA76Zn5IhRTaZO03L5MqXffEPJvHmYT55EadYM91/8Ao8ZM3CJcc5UOntjNBpxcXEhNTWVbdu28etf/5o5c+bwxBNP0L9/fw4ePEhcXJy9zXR6bClerMA64HI1z6kBngb6CCGSa2uYI9AYHM5n/5fJpk0X+PGn/nesG01Glq/4gStXrwAw4JGBRHaPtIeJTQ5TejplK1dStmIFpkNqC2tdjx7oH30U90mT0HXvLp2TpFEhxUvdaAy+pLYIIZgwfjcxsS14/fVu1T7OarWy78C+ijb/iqLwcN+H6RnVq8m8PwohMO7ZQ8mCBZR9/z2ipARdRAQeM2bg/vTTMg25gcnNzcXb25vi4mJeeuklVqxYwZIlS/Dw8GDChAncuHEDbzkyoV6xtXjpK4Q4WK0TKooOMALRNRUviqJ0BF4BooFIwB3oLITIuWufHvgLqkjyBo4ArwghdlbzOj7An4FJQBtUYbZZCPHcXfsc3uGUlVkI77aexYvj6BvX4o7XCgsLWbb8e4pLilEUhTGjxtI5QPaftyXmM2cqhIxx924QAm1QEO6TJ6N//HFcejUdRy1pvEjxUjcagy+pC+fOlRLTJ4G16wbcUYNZHU5mnGTLts1YLBYAOncOJH5IfKMfaFlTrAUFlH73HSXz52NKTARXV/QTJ+IxcyZuQ4eiyNRvm5CSkoJOp6Nbt24EBARw9OhRzp49y6lTp5g4caK9zWv01Jcvqc5fw5+AvOqeUAhhLj/mXC3sCQYeB64Du+6zbwHwAvAGMBbIBzYqihL1oAuUC5fdwDDgdSAe+B3QKB2yXq/l9dfD+dOfjnG3EH3ooYcYM3osOp0OIQQbNq0n/0K+nSxtmug6daLZf/83LXfupE1+Pl5ffIEuKIiif/yDK9HRXOrShYI//hHTkSM/+/lJJE0VRVFya/FxRlGU6lWOS+qVDh3c+ev7PZgx/SBGo7VGx4Z0DWHKpCkVnTGzs7P4btmSiuGWTQVN8+Z4zppFq4MHaZWSgufs2Rg2b+ba8OFcCgyk8O23seRV+1ZMUksiIyMJDw9HURRycnLw8vLCZDJhNBoBGD16NMnJyRQVFbF582Y7W9t0caiCfUVRNEIIa/m/ZwLzuCvyoihKJGqkZboQ4qvyNR2QCpwUQox/wDU+B0YB3YUQBQ/Y2yielpnNViIjN/Lxxz2Jj2/7s9ezsk+zbsM6hBC4ubnx2KOP4evb4h5nktgK69WrlP74I2VLl2LYuhUsFrRdu+L++OO4T52KrvzNUyJxBGwdeXG2dOXG4kvqghCCSZP20KOHd7W7j1XGYDCQsDWB7OwsALRaLQMeGUh4WNN9LxRlZZT9+CPF8+dj3LIFFAW3ESPwmDED/fjxcgCmHbh69SrNmjXj7Nmz/Otf/+Kjjz7igw8+ICwsjHHjxnH06FEiIiJkk6QqcPpuY/cRL39Cjex4CyFKKq2/BbyK+g0xVHFOT1Rn+J4Q4i/VsKHROJxly/L4+4cn2bd/6D3f6FPTjrN1+1YAmnk247FJUxz+a2oqWC5fpmzlSkqXLsW4fTtYrejCwnCfOlVNLQsLs7eJkiaOncSLTdKVbUFj8iV1IT+/lD7RCfz0U396R99/eOW9EEJw+Egye/fvrYhEh4aEMmjA4Cbf5taclaUOwPzqK6znzqkDMJ99Vi3ylz7CrmRmZuLh4UGLFi0YNGgQu3fvZuvWrZw/f55p06Zx/fp1vL29m6wIr4wt08YcjXAgu7JwKScVcEVNPauK3qh1NBcVRflBUZRSRVGKFEX5UVGURl0MMnlyR6xWwcqV987WC+8WQd9YtZNGUXERq9b8RFlZmS1NlFSBtlUrPGfNouWWLbQ5fx6vzz5D07o1hW+9xeVu3bjUvTuF77yDOSPD3qZKJLbClunKknqiXTt3/vZhFNNnJGIwWGp8vKIo9OrZm0cnTMLTwxOAEydP8N2y77jcxNLI7kYXGEjzv/yFNmfO4Lt2La6PPELxJ59wuVs3LvfrR8nChViLiuxtZpMkODiY9u3b4+bmxr59+9Bqtfj7+xMaGgrAmDFjSE9PJy8vjy+++AJQG1ZIak9jFC++qDUxd3Ot0utV0b7884eABRgPzAJ6AtvLn479jAEDBhAdHU10dDRffvll7axuYDQahb+8050///k4Fsu9o2nRvaLpUd5x7Nr1a6xeu6oij1PiGGjbtMFzzhxabt9Om3Pn8PrnP9F4e1P4pz9xKSSEy9HRFH30EZZ8WbskcV6EEO8KIWr0S15+zMW6XFdRlA2KoghFUd6pxl69oih/UxQlv/xB2D5FUQbU5frOwBNP+NG160O8/XZarc/RoX0Hnnj8F3Ts0BGAGzeu8/3y7zmccrjJ1wYqWi360aPxXb6cNmfP0vxvf0NcvcqNGTO42K4dN154AeOBA03++2RvQkJCiI2NBWDPnj2EhYVhtVrR6/UAPP/886xcuRKr1crChQvlz6uG1EvamKIoQagRj0whxOk6n5D7po0lAM2EEHF37Y8HNgEDhBD3LPZXFOVJYDFwFIgS5V+8oiixwH7gl0KIuZX2N6pQvxCCoUO289xznXl2WkCVezYmbORUpvoUv3279owfO6HJh+QdHcvZs5QuW0bp4sVq+2WNBtchQ/B46in0jz6KxskHvEnsS1PoNqYoyi+AfwBtgXeFEK8/YP9iYAzweyALeAm1njJOCHHkrr2NypfUlUuXyujdaxPLl/cjJrb29ZVWq5VDhw9x4OD+ips7fz9/hg2Nr4jMSMpbLu/dS8n8+bdbLoeH4zFzpmy57KAYjUasVitGo5E33niDjz/+mM8//xyDwcBvfvMbdu3aRe/evfHw8LC3qfWKQ6SNKYqiVRTlK+BrYDLwlaIoC5WGTey7xr2jKz6VXq+Kq+WfN4tKqk0IcQAoQI3ANFoUReGdd7rzl7+kVhmyVxSF+KHxFS2Tz+efZ8261ZjNZluaKqkh2o4dafbyy7RKSqJVejrNXnsNS1YWN55/ngtt2nBtyhRKf/wRYbhnuZdEIrkPiqJ4Ax8Bv63m/kjgSeBlIcQ8IcQW1E6ZucDbDWZoI6F1az0ffdyTGTMTKS2tefrYLTQaDX169+GxRx+r6EaWm5fLkqXfknMmp56sbfwoioJbv374fPVVRVdLxcODgpdf5mKHDlybOpWyTZsQMlXJYXB1dUWv19O8eXM+/vhjAKZOncqUKVMAmDt3LiUlJRw8eJA//OEPAGRkZFBQcN8+U02GuqaNvQpcEkI8AkwUQgxALYh/uc6WVU0q0FlRlLvlaDfUgs3MBxwLUFW4qdH/ZT/cryXh4V7Mn5dV5R6tVsuoEaPw9/MH4Oy5s6xdv0YKmEaCS2gozd9+m9aZmbTctw/PF17AuGMH1x99lAvt2nFj1iwMO3ZIRyWRVJ8PgFQhxJJq7h8PmICltxbK626+A0YoitK0hpTcg8ce86N7dy/e/PPxOp+rbdt2PDHlF3TtEgJAaWkpq9euYseu7ZhMpjqf35mosuXyiBFqy+W33sKcm2tvMyX3wMfHh/bt1eqGb7/9lpYtWxIcHMyTTz4JwJdffklSUhJFRUU899xzAFy5coXCQqcMht+XuoqXp4H/UxSlE6BRFMUP+Ax4ps6WVc0qwAWYcmuhvNPMVGBTVZ3GAIQQZ4EkYHjl6JCiKHFAcyCxoYy2JW++FcH775+gqKhqMaLV6hgzamxFTnFuXi7rN66rGBQmcXwURcG1b1+8/vlP2pw7h++6dehHj6b022+5OmgQlwICKHjlFUzH637zIJE4GoqiBCmKMqI8bbku5+kPPAv8sgaH1aVxTJPh0097sWRJLnv3XKnzudzc3BgRP4L4ocMr0pyPHjvKd98vIV/WAN4Tlx498PrkE9qeO4fPkiVou3Sh8M03uRQQwNWRIyn94QeErHt1aHx9fYmKUkcYfvjhhwwZMgSNRsPjjz8OwHfffcfnn38OwKuvvsrVq1cxGAxO35CpTjUviqKcBHagplv1AFLKP2KFED1qec7Hyv85FJiN6lAuA5eFEDvK93wHjEDNNc4G5qAOq3y4cptMRVEygTNCiKGV1oYCG4GfgPlAK+BdoAjoJYQorbS30eYpP/30fiIivHj11fu3UDSZTKxa8xPn888DENApgFEjRqPT6WxhpqQBsBYXU/bTT5QuXoxh40awWHDp3RuP557D/Re/QNNCzviR1AxHqnlRFEWL+t4dDKQDoagR9xmihg5NURQX1LlhK2/VuCiKInhAzYuiKJtQvxd971ofBiRwV+1lY/YldeXHH8/xx/85StKheDw86sev3Lx5g4QtCRVDlxVFoWdUL/rGxKLVSt91P8zZ2WrL5YUL1ZbLLVvebrncrZu9zZPUgQULFvDMM8+wfft25s2bx7Jly1i0aBGxsbGEhIRgsVjsfm/nEHNeFEU5CEwWQuQpinJZCNGqPPrynRCiXy3PWZVBO4QQg8r3uKMKjicBb1TB9IoQYvtd58oBcm4dV2l9FGpecnegGFgL/P7uTjWN2eGcOlXIwAFbOZ46Cl/f+w+yMhqN/LT6Ry5cvACAX0c/xowaK4v4nQDLpUuULllCyddfYz5yBFxc0I8di8dzz+E2ahSK/BlLqoGDiZfXyu14RVGUS0KI1oqivA9cFEL8o4bneh2YDoTfenBVTfFSo8Yxt3xJVFQUWq0WgFmzZjFr1qyamNtoefaZA7Rq5cbf/xFVb+e0Wq0cSTnCvgN7K9rO+vr6Ej9kOK1bt6636zgrwmLBsGmTWuS/ahWYzbjExeE5cyb6xx9H06yZvU2U1AEhBIqisGTJEmJjY3F1dWXIkCFkZGSwa9cudDodcXFxFftshaOIlzHAK6gpXJ8DLwLLgDduRUkaM41ZvADMmZ2Et48r77334CCY0WhkzbrVnDuvjklo164948eMw9W1yaduOw2mlBRKFi2idPFirJcuqUPOnnoKj2nTcImqv5sKifPhYOIlHTXyrgCHUCP/GuBHIUS1m64oiuIPnARmoj7AusV11Hb67wKFQoif5dIqirIUtWNlyF3rj6PWwUQIIVIrrTdqX1JXrl410LvXJr75d18GDGhVv+e+dpXNWxK4VD4HRqPREN0rmujefSqEouT+WC5epPTf/6Zk/nzMJ0+iNGuG+9SpeEyfjktcnByu6CSUlZWh1+tZv359hZgJDAwkMTGRgoICUlNTGTduXIMKGocQLwCKokwE3kQd/lgCvCmE+KlOJ3UQGrvDOXeulN69NpGYFI+f34Pb7ZlMJtZtWEtunlrM17p1GyaMnVDRl1ziHAiTCcOGDZQsWqQ+cTOZ0EVG4jFtGu5PPYVWPrWU3IWDiZd6SVdWFGUQsO0B23re3fa4/Ng3gNcB78p1L4qivAn8D+r3yVBpvVH7kvpgzZrz/O7/HSHp0HCaNavf1BWLxcKhw4dITDp4RxRm6Prv99IAACAASURBVKChtG3brl6v5czc0XJ52TJEcTG60FA8pk/H/Zln0LZta28TJfXMrfeklJQUDh06xIwZM5g0aRK/+c1viI2NZenSpUybNq3erucw4sWZcQaH88Ybxzl3toQFC2Oqtd9iMbN+0ways9VuZS1atGTC2Al4esqe+s6I9epVSr/7jpKvv8aUlAQ6HW6jRuHx/PPox46VaWUSwOHES72kK5e3R75XyHEb8B9gAZAkhPjZ2HJFUaKAw8BzQohF5Ws64BjqvLNxd+1v9L6kPpgx/SCenjo+/WevBjn/5cuXSNiSwNVrVyvWenSPJC42DlfX+6dPS+7EWlhI6fffU7JwIaa9e0GrVVOOp0+XKcdOTmFhIS4uLhQWFvLJJ5/wzjvv8M477+Dj48NLL73E999/z5gxY2p1XyjFiw1wBodTUGAivNt61qwdQGSkd7WOsVgsJGzZxKnMUwA0f6g548dOwMfH5wFHShozprQ0ShctouTf/8aan4+mTRs8pk3DY+ZMdF262Ns8iR1xMPHSoOnKd9e8lHfTPA28LYR4u9K+ajWOKd/b6H1JfXDjhpFePTcxf0Efhgxp0yDXsFgsJB9OJvHQwYrumc2aNWPQgMEV880kNcOUnk7JV19R+s03WC9eRNOmjVrkP306LqGh9jZPYgNKSkowGAx4e3szZ84cPvroI7Zt28aaNWv47LPPSE5OplevBz+UkOLFBjiLw5n7WSZr1pxn7boB1T7GarWyfed2UtPUNrt6Nz1jx4yjnQzBOz3CbFbTyubPp2zNGrBYcB04UJ3WPHkyiru7vU2U2BhHEi/QsOnK9xAvAaji5C0hxJuV9lWrcUz5XqfwJfXBhg35/PpXyRxKHk7z5g339P769ets3bGF8+fPV6wFB3VhwCMD8PSQmQS1QZhMlK1bR+nChZStXat2snz4YTxnzEA/ZQqaJv673dQoKyvj2rVrtG/fntWrVzNu3LgHHiPFiw1wFodjMlmJjNzIJ5/0JD6++jmrQggSkw5yIPEAADqdjpHDR9I5ILChTJU4GJb8fEoWLaJk/nwsp0+jeHnh/vTTeM6cKYv8mxCOJl4aG87iS+qLF2clAfDFl9ENeh0hBKnpqezZuxtj+TwTNzc3+sb0JSK8OxpNXUfdNV0sFy6oRf4LFqhF/p6e6B9/HI/p03Ht108W+Uvuic3Ei6IoQ2pyQiHE1toa42g4k8NZufIs776TxoGD8Wi1NXtTSU07zrYd2yo6UAwaMJiI8IgGslTiiAirFePOnZTMn0/pDz+AwaDOjpk5U50d4+VlbxMlDYgUL3XDmXxJfVBQYKJPdAJ//0cUY8e2b/DrFRcXs2PXdk5nna5Ya9myJYMeGUy7djKboC4IITDt20fJggWULl2KKC5G27UrHtOn4/Hss2jl91dSCVuKFytwa1NVd72i/DUhhHCa3oTO5HCEEAwcsI0XZgXyzDMBNT4+OyeLDZs2YDabAYiKjKJfXH/55KoJYr12jZLFiymZNw/zsWMo7u7qE7eZM+UTNydFipe64Uy+pL7YtesyTz+1n6RDw2nVyjYt+bNzstm5ewcFBQUVa2GhYTzctx8eHg/uyCm5P9aiIsqWLaNk4UKMu3eDVovb6NF4TJ+OfswYWeQvsbl4KQCWl38U32+/M8x3uYWzOZy9e67wzDP7OZ46Cnf3mmvMCxfyWbN+DaWlpQB08g9g5PARchZME0UIgSkpSY3GfPstoqgIXUQEnrNn4/700zIa40Q4qnhRFMUNmC2E+MTettwPZ/Ml9cWrr6SQlV3M0qW2myViNps5dPgQh5KTKgr6ZSpZ/WM+eZKSr76iZNEirBcuoGnd+naRf1iYvc2T2AlbipeBwLPAZNRBYCuBRc6UHlYVzuhwpkzZS0yML7//fe06hBQUFLBm3eqKVpS+vr6MHTUOL3mj2qSxFhWpLZfnzsWUnIzi6Yn7k0/iMXs2rtXoQCJxbOwpXhRFaQlcFZWcVXmx/C+B3wGtHT3i74y+pD4oK7MQ13czv/1/IbXKCKgLN2/eZNeenWTnZFestWzRkv79HsGvo59NbXFmhNmMYf16ShYuVBvAmM24xMWps2MefxyN+r4iaSLYvGBfURQ9MAl4BhgG5AOLgW+EEOm1NcCRcUaHk5FRyMABWzl2fCQtW9YuYmI0GtmYsIGcMzkA6PV6Ro8cQ4f2HerRUkljxZiYSMnnn1O6ZAmitBSXmBg858xB//jjaGRqRqPE1uKlPKLyATADtaPYTeA1IcRcRVGeBv4GtAESgdeFEAkNbVNdcEZfUl8cOXKD0aN2sP9APP7+tn9/uFcqWeeAzvR7uD8+3nI8QH1iuXjxdpH/iRMoHh63i/z795cpx00Au3YbUxSlHWp7yGeBCGCuEOJXtTXCUXFWh/Nfv05Gp1P4x0c9a30Oq9XKvv17ST6ijjPQaDT0i+tPZI9I+QYkAcB6/Tol//43JXPnqo7K2xuP557D48UX5WyARoYdxMu7qJPqNwPJQGfgUeAL4CUgA/i9EGJ1Q9tSHzirL6kv3n8/nS2bL7Jh40A0Gtv7D7PZTPKRZA4lJ1XUdWo0GrpH9CAmOga9Xm9zm5wZIQSm/fspWbiQ0u++QxQVoe3S5XaRf/uGb+IgsQ/2Fi+uwDhU8TIGWCqEeKq2RjgqzupwLl82ENljA1u3DSY0tG4h27T0NLbt2IrVagWgS3AXhgweiquLnGYsURFCYNyxg+LPP6dsxQowmXAdPBjP2bPRT5yIIidfOzx2EC+ZwIbKD8UURZkOzAcSgHFCCGND21FfOKsvqS/MZitDBm9nyhQ/fv1f9huIW1RcxP4D+0k/kVax5ubmRkx0LN0juqPVOnR2YqPEWlx8u8h/1y7QaO4s8pf+wamwi3hRFKUfatrYFMAN+An4BkgQQlhra4Sj4swO56OPTrJ92yV+WvVInc918eJF1m1cS1FREQC+Pr6MGjkaXx/fOp9b4lxYLl6kZOFCSr74AsuZM2jatMFj5kw8Zs1C5+9vb/MkVWAH8WIARgshtlRa8wauAaOEEBsb2ob6xJl9SX2RmVnEgEe2sGXrYMLC7FsHcenyJXbv2cW58+cq1ry8vOgbE0eX4C4yu6CBMGdk3C7yz89H06oV7s88g8eMGbh062Zv8yT1gC0L9oNRBcvTQACwE1WwLBNCFNX2wo0BZ3Y4RqOVqKiNfPRRT0aMqP7gyqooLS1lY8IG8s7mAeDi4sKwIcMIDrLfUzSJ4yIsFgwbN1I8dy6GtWtBUXAbMwbPOXNwGz4cRT7hdCjsIF6sQF8hxMFKa1rABEQLIZIb2ob6xJl9SX0y78vTLFiQza7dQ3BxsW/XLyEEWdlZ7Nm3m5s3b1ast2rZiri+D+Pv5y9FTAMhzGYMGzeqRf6rVqlF/rGxapH/E0/IIv9GjD1aJa8A/g2cud9+IURWbY1xNJzd4axZc54//vEohw4NrxdHYbVaOZB4gKRDiRVrEeHdeaTfI+h0ujqfX+KcmM+coeTLLymZPx/rpUtoAwLwePFFPKZPR9u6tb3Nk2A38TIZSKm0rAVOAhOA1Mr7Hd3vOLsvqS+EEEwYv5ve0b78+c/h9jYHAIvFwrHjx0hKTqwYEwDQoX0HHu77MG3byiGMDYnl0iVK//Mftcg/LU2dKzZlilrkP2CAFJCNDFuLl1s8MMfM0VtW1gRndzhCCMaM3sWYMe146Vf1FyHJzskiYUsCBoMBUNspj4wfRYsWLertGhLnQxiNlK1cSfHcuRh37ABXV9wfewyPOXPk8Es7Yyfxci9/o9xr3dH9jrP7kvokP7+UPtEJrFzZnz4xjpN6bDQaOZJymOQjyZhMpor1wM6BxMXG4esr/VtDIoTAdPCgWuS/ZAmisBBtcDAezz+Px7RpaDvIbqeNAVuKl2k1OaEQYlFtjXE0moLDOX78JiOG7+DosRG0aFF/wyYLCgvYlLCR/Av5AGi1Wh7p9wgR4d3lTajkgZjS0ij5/HNKFi1CFBSowy/nzFGHX8qUAZtjB/HiVH6nKfiS+mTZsjzefPM4iYnxeHg4VtS+tLSEpOQkjh47WtGoRlEUugZ3pU90DD4+sr1yQ2MtLqZs+XK1yH/HDrXIf+RItch/3DhZ5O/A2LXbWFOhqTic//p1Mlqtwkcf17518r2wWq0cTDpI0qFEbv2eBXYOZMigobi7u9frtSTOibW4+Pbwy0OH1OGXTz+N55w5uERG2tu8JoM9h1Q6A03Fl9Qnzz5zAF9fVz7+pH79Un1RUFjAwcSDnDiZXuHfbomY6Og+smGNjTBnZqpF/l9/jfX8eTQtW6pF/tOn4xIRYW/zJHchxYsNaCoO58oVA5E9NpKweRDdutX/U+1z586yafMmiorV/g7u7u4MHjiEoMCger+WxHkxJiZSPHcupUuWQFkZLnFxeM6ahX7SJBmNaWCkeKkbTcWX1CfXrxvp3WsTX87rw7BhbextTpVcu3aVg0kHOZV56o71rl1C6CNFjM0QZjOGTZtuF/mbTLjExNwu8vfysreJEqR4sQlNyeH889NTbNyYz+o1jzRIWldZWRlbt2/hdNbpirWQrqEM6D9ADgCT1Ajr9euULFpEyeefYz55EvR69OPG4f7UU+hHjZIpAw2AHdLGtgK/FEKcqOZ+DepAyxeFEKcetN/WNCVfUp9s3nyRWS8kknRoOL6+jv13rYqYRE5lZtyxLkWM7bFcvny7yD81VS3ynzwZjxkz1CJ/jX072TVlbFnz4lROpCY0JYdjMlnp2XMT77/fgzFjGma6rRCCkxkn2bl7R0Uxv6enJ0MHD6WTf0CDXFPivAghMB04QOnixZQuXYr18mUUHx/cp0zB/amncO3fXzqpesJOBfuxQojEB27G8dsoNyVfUt/89uXD5F8o49tv+zaKesmqRExQYBC9e0bTpo3jRpGcDSEEpqQkShYsUIv8CwrQBgbi8dxzuD/5JLogmf1ha2zdbcxpnEhNaGoOJyHhAr/+VTJHUkag1zdc856ioiK2bt/CmdzbXbe7hXWjX1x/GYWR1AphMmHYvJnSxYspW7kSUVKCpl079I8+ivukSerTNhcXe5vZaLGTeMkHDDU4rBPQxxH9TlPzJfVJWZmFuL6befm3ITz7bIC9zak2165dJfFQIhmn7hQxHTv60btnb/w6+jUKMeYsWEtKKFuxgpIFCzBu3w6AS9++eDz1FPqpU9G2amVfA5sIthYvTuNEakJTdDhTp+6le3dvXn+9YafZCiFIS09j156dFW0n3d3dGdB/AF2Cu8o3dUmtsRYVUbZqFWUrVmBYvx5RUoLi64t+/HjcJ03CLT4eRYrkGmEH8fJVLQ/9sxAit16NqQeaoi+pT44evcHIETvYtXsoQUHN7G1Ojbh2/RrJh5M5mXGiojsZQOtWrendqzeBnYPQyAixTTHn5lK6ZAmlixdjPnYMtFrchg9XU48nTkTj6WlvE50WW4oXmzkRRVE6Aq8A0UAk4A50FkLk3LVPD/wFeBrwBo4Arwghdtbweg8Du1FnB7gIIcx3vd7kHE5ubgmxMQns3TeMzp0b/g+4oLCAbdu3kpt3+1fF38+fQQMH49VcFthJ6oa1pATDxo2UrVhB2erViJs3UZo1w23ECPSjR+M2ciTa9g2TJulMyIL9utEUfUl988nHGfzwQx7btg9Gp2t8N/uFhYUcOXqY1NRUTObbc2K8vbzp2bMXoV1D5TBnO2A6elRNPV6yBEteHoqHB/rx49E/9hhuo0ah8fCwt4lOhVMW7CuKMghYChxCnaY8nHuLl8XAGOD3QBbwEjAKiBNCHKnmtVyAZKAl0BYpXip4//10Dhy4xooV/WxyPSEEpzIz2Ll7Z8UEY51OR0yfWKJ6RKHVOvT8OUkjQRiNGLZtU4XM2rVYz50DQBcVpQqZ0aNxjY1FkTcQP0OKl7rRVH1JfWK1CsaO2UXfuBa88Ua4vc2pNaVlpRw7dpSUYymUlZVVrLu7uxMR3p3uEd3x9JBP/m2NsFox7tpF6bffUrZiBdYrV1A8PHAbPRr3yZNxGzMGjfzbrTPOKl40Qghr+b9nAvO4S7woihKJGmmZLoT4qnxNB6QCJ4UQ46t5rT8CTwI/AX9EipcKDAYLvXpt4oMPIhuseP9elJWVsWffbtLS0yrWfH19GdB/IH4d/Wxmh8T5EUJgPnaMsnXrMKxfj3HPHrBYULy9cYuPx23oUNyGDkUbFCRTGJHipa40VV9S35w/X0psTALLlvWjb1zjnmhvMplIS08l+UgyRUVFFesajYauXboS1SOKVq1a29HCposwm1Uh88MPqpC5cAHc3NCPHIn+scfQjxsnWy/XEqcUL5W5j3j5E/AnwFsIUVJp/S3gVdRvyH3rcxRFCQKOokZrhgB/RoqXO7hVvH/4yAjc3W0b+Th3/hxbt2/lxo3rFWvBQcH0e7g/zR+S8zwk9Y/1xg0MCQmqmNm0Cev58wBo/fxwHTJEFTNDhqDt0MHOltoHKV7qRlP2JfXNjz+e49VXUjiYGE/z5o2/CYfFYuF01mmOpBzm4qWLd7zWoX0HIntE0Tmgs6yLsRPCYsG4dy9ly5dT+sMPasRep8N14ED048ahHztWdi2rAU1ZvHwH9BRChNy1/3HUlLMIIUTqA869CcgXQkxTFOVNpHi5J088sY/w8Ob86U+2D9FbLGYOHzlM4qFEzGb1x6LVaundK5rePXvL3GBJgyGEwJKRgWHrVgxbt2Lctg3r1asAaLt2xW3QIFz79cO1Xz+0gYFNIjIjxUvdaOq+pL6Z/WISJpOVBQtj7G1KvSGE4MLFCxxJOczprNNUvjdr3rw5PbpHEhYSJjty2hFhtWI6eJCyH3+kbPVqzGlqloguLAz9uHG4jRuHa1wcikx1r5KmLF42oX7Rfe/aPwxIAAYIIXbd57xPA58CoUKIS9URL1FRt+suZs2axaxZs+rhK3R88vJKiOmTwJ69QwkMtE+Hl6KiQvbs20vGqZMVaw899BD94voRHNSlSdw4SuyLsFoxHzuGYcsWDFu2YNyzB3HzJgCaNm0qhIxrv3649OzplEMypXipG1K81C9FRWZiYhJ4660IpkxxvpTigsICjh07yvG04xiNxop1nU5Hl+CudI/oTpvWcl6MvTGfPk3ZmjWUrV6NcccOMJvRtGiB2+jR6MeMwW3YMDQtGnd6Y33TlMVLAtBMCBF31/54YBP3ES+KovgC6aid0D4vX3sTGXmpkg8+OMHePVdY+WM/uwqF8/nn2bFrO1euXKlYa9O6Df3i+tGhQ0e72SVpegirFXNqKsY9eyo+LNnZ6ot6Pa59+uASE4NrdDQuffo4RXTGUcWLoihuwGwhxCf2tuV+SF9S/yQlXmPChN3sPzAMPz/n7AhlNBk5cSKdlKMp3Lh5447XWrdqTfeI7nQJ7oqLnGFld6w3b6qdLVevpmzdOsS1a6AouPTpg9uIEbgNH642hGniPytbtkoeUpMTCiG21taYu65blXhZCkTVJm1MUZTPgP7AIOBWw/VXUdsztwTKhBDFlfY3eYdjNFrp0yeBN94IZ/Jk+4oEq9VKWnoq+w7su6NLS0CnAB6O60cLX/mEQ2IfLOfPY9y7F+Pu3Rj37cN05AiUPzFVfHwqhIxLdDSuffqg6dChUQkae4oXRVFaAldFJWelKIo78Evgd0BrIYRD52lIX9IwvPdeOlu3XGTDxoFotY3n76mmCCHIO5vHsePHyM7JuiOlzM3NjbCQMCLCu+Pj42NHKyW3EGYzpsREDJs2UbZxI6YDB8BqRWneHLchQyrEjC4w0N6m2hxbD6m8tamqdwdR/pqoLydyH/HyBvA6Py/YfxP4H+5TsK8oynZg4H0u+5MQYmKl/dLhAHv3XOHJJ/dxJGUE3t72T4kxGg0kH07mcMrhinoYRVEICwkjNqYvzZo1riFmEudDGI2Yjh/HlJSEKTERY1KSOgzNYgHUdDOXyEh0PXrgEhmJS48e6EJDHTblzA5DKt2AD4AZqPO+bgKvCSHmlqf+/g1oAyQCrwshEhraprogfUnDYLEIhg3dzpix7fjd70LtbY5NKCoq5HhaKmlpqRSXFN/xWscOHekW1o2gwGBZF+pAWG/cUNOON27EsHEjllx1rp02OFgVM4MH4zpoENq2be1sacNja/FSACwv/yi+334hxI7aGnPXdasSL1HAYeA5IcSi8jUdcAzIFEKMu885o1CHWlbmOWAaMAy4KIQ4Xmm/dDjl/OqlQwgB//dZb3ubUkFRcREHEw+Qlp5W8SRKq9XSPbw7vXr1lr3yJQ6FKC3FlJKCMTER06FDmI8dw5SaCobyZy0uLujCwnApFzS6Hj1wiYhA066d3aM0dhAv76I+jNqMOo+rM/Ao8AXqXK8M4PdCiNUNbUt9IH1Jw3HmTDFxfTezdu0AevZqOpEHi8VCdk42x44f5ey5s3e85urqSkiXELqFhdOqVSu7v39IbnOrIUzZpk0YNm3CuHMnoqAAAF1oKK6DB6tNYQYNQtva+Vpl21K8DASeBSYDGmAlsKi+0sPucb3Hyv85FJiNmhpwGbh8SxiVdxwbgTqkMhuYA4wFHhZCJFc6VyZwRggx9D7XexNZ8/JAbtwwEhW5kcWL4+jXv6W9zbmDa9eusnf/XrJzsivWdDqdKmJ69sZDTsiVOCjCbMackYEpJQXz0aOYjh7FlJJSMUATQGneHF1oKLqwMFXclH/Wdu5ss4GadhAvmcAGIcSvKq1NB+ajNmYZJ4QwVnW8oyF9ScPy7bdneO+9dPbvH4anZ9OLOFy/fp3jacc4cfLEHSnVAC1atCQ8rBtdu4bgrne3k4WSqhBmM6YjRzBu24Zh2zaMu3Yhyuf+6MLDcR00SI3MPPKIU4gZmxfsK4qiByYBz6BGKfKBxcA3Qoj02hpwj+tUZdAOIcSg8j3uwLuoQya9gRTgFSHE9rvOlQPk3Dquiuu9iRQv1WL58rO89dZxEhPjcXNzvBTz8/nnOZB4gLNn8yrWdDodPbpH0iuqF+7u8o1b0jiwXr2K6ehRzGlpmNLTMZd/WPPzb29ydUXXpYsqakJD0QUHow0ORhcUhKZNm3p92moH8WIARgshtlRa8wauAaOEEBsb2ob6RPqShue5aQfQ67V8/kW0vU2xG7eiMWnpqeTm5d5RG6PRaAjsHES3sG74dfSTc2McFGEyYUpOVoXMtm0Yd+9GlKgVEtrg4NvdLfv3RxcSgtLIfo527TamKEo7VOHwLBABzK38hMxZkA7nToQQTJq0h+hoX157rZu9zamSc+fOsj9xP+fLBw0CuLi4EBHenajIKJp5ypoYSePEevMm5hMnKsSMKT0d84kTWE6fBqu1Yp/i6Yk2KEgVNOWfdUFBaIOD0XbsWOM5BHYQL1agrxDiYKU1LWACoitH2BsD0pc0PIWFJmL6JPD2X7o7ZfvkmlJUVEj6iROknUiloDwt6RaeHp506dKV0K4htGwp08ocGWE0YkpKwrB7N6by7pa35o4pvr64PvzwbUHTpw+Kg88Bsrd4cQXGoYqXMcBSIcRTtTXCUZEO5+fcmv2yfccQQkIc93sihODsubMcOLif/Au3n1ZrNBrCQsPo1bM33l53lz9JJI0TYTRiOXMGc2YmltOnMWdm3v53VlZF5zMAXF3RduqELiAAbefO6MePRz9mzH3PbyfxMhk1qn4LLXASmADc0VFSCJHV0DbVBelLbMOhpGuMH7+bPXuHEhAgax5B9YXnzp8jLT2N01mZFU1ubuHr40tI1xC6dg2h+UPN7WSlpLrcqpmp3KrffLJ8Dp6LCy69e+MaF4drTAwuMTFqerEDiVO7iBdFUfqhpo1NAdyAn4BvgAQhhPV+xzZGpMO5N//65ylWrjxLwuZBaDSO80dxL4QQ5OXlkpScxLnzleoIFIXgoGB694qmVctWdrRQImlYhMWC5dw5LJmZmE+fVj/n5GDJzsaSk4Pnr37FQ2+8cd9z2Em83Ms5Kfdal62SJbf4xz9O8uPKc2zZOggXl8aVUtPQGAwGTmdlcjLj5M+K/AE6tO9ASNcQgoO64ObmZgcLJbXBcuUKpr17bwuaQ4egvPZJ06IFLuVCxjUmRp091sp+9zy2LNgPRhUsTwMBwE5UwbJMCFFU2ws3BqTDuTcWi2DggK0880wAL84Osrc51Sb/Qj6HkpPuKOwH8Pfzp2dkT/z8/B3qCYVEYguE1frAvGk7iJdpNdl/q/OkoyJ9ie2wWgXjx+2iV29f3n47wt7mOCyFhYVkZGZw8uQJrl67esdrGo2GgE6d6RLchYCAAFxdHLOFu+TeCJNJHaR84ACmgwcxHjyIOTUVbnVl7dz5tpiJicElMhKNjd6X7NEqeQXwb+DM/fY7evi+JkiHUzXp6QUMGbyNvfuG0blz4wrPX716lUOHk8g4lXFHQaOvjy+RPaII6RoiJxZLJJWw55DKhkRRlBGoQ4q7AT6onS33Am8KIdIecKwP6ryZiaizaPYBLwshjt1jr/QlNuTixTJi+iSw6JtYBg1q/B2aGhIhBFeuXuFkxkkyTp2kuPjOaRg6nY6ATgF0Ce5CJ/8A6RsbKdbCQkzJyRVixnTgAJa88uZGioK2SxdcevbEpVcv9XPPnmhb1n9nWVuLl1s8MMfM0cP3NUE6nPvz4Ycn2LTxAhs2DnT49LF7cbPgJoePHCb9RNodecB6Nz3h4RH0iOghB15KJDi1ePkF0As4gCpc/IFXAT+guxDing/rFDVEuxN1/szvgeuoc2nCgSghxNm79ktfYmMSEi4w64UkEpPiadlSpkBVB6vVyrnz5ziZcYLTWacxGu/sRq7T6egc0JngoC4EdAqQgzAbOZb8fHWQ8uHD6kdycsUATQCtn98dYsalVy80HTrUKUPFluLFqcL3NUE6nPvTWNPH7qasrIy09DSOHkuhsOj235JGoyE4KJjuET1o19b+gwIlEnvhrOLlYpjYZgAAIABJREFUXiiKEgKcAH4nhPh7FXsmAD8CQ4QQ28rXvFDnjv1HCPFfd+2XvsQOvPrqUU6cKGDlyn7y/buGWCxmcvPyOJV5iqzs05hMpjted3FxqRAy/n7+MiLjJFivXr0tZsoFjTkjoyLlTNOyJbqoKFwiI9WByj16oAsLQ6lmjZRdu401FaTDeTDp6QUMHaKmjzX27i5Wq5Ws7NMcSTlyR4cygBa+LYgIjyCka6gsZJQ0OZqYeGmJGoX5jRDi0yr2LABGCiE63LW+CBgkhOh017r0JXbAaLQyaOBWnnqqEy/9qou9zWm0mM1mcvNyOZV5iuycrJ8JGZ1Oh7+fP4Gdg+gc0Bm9g7frldQMa1GROkQ5OVkVNCkpmI4fB4NB3aDToQsNxfNXv8LzxRfvey4pXmyAdDjV48MPT5Cw6SLrNwxolOlj9+LixYscOXqEzNOnsFaan6HT6ejapSsR4d1p07qNHS2USGyHs4uX8hkyWqAT8FfgYSBSCHGpiv37gZtCiBF3rf8BeB94qHJDG+lL7Mfp00U80n8L69YPJCpKtsevK2azmTO5ZziVeYqcnGxM5juFjKIodGjfgcDOQQR2DpS/706KMJsxnzqlipqUFExHj+I+aRIe06ff9zgpXmyAdDjVw2y2MnDANp59tnGnj92LkpIS0k+kcTzt+M8GfbVq1YqIbhF0Ce4qozESp6YJiJckoHf5fzOB8UKI9PvszwCShRBP3LU+E5gH+Ash8iqtPwQUREVFoS0fEDpr1ixmzZpVv1+I5J4sWZLLu++mceDAMDw9ZZ1GfWEymcg7m0tWdhbZ2dmUGcp+tqd1q9YEdg4kMDAIXx9fmb7XxJHixQZI8VJ9bqWP7d4zlMBA5ytyF0KQm5fL8dTjZOdk3dGlTKvVEhQYRFhIGB07+qF5QNtZiaSx0QTESxjQHAgEfge0AfoLIXKq2H8KSBJC/OKu9ReAL6lCvEhfYj9mTD+IVqvw5bw+9jbFKbFarZzPP09W1mmysrPuqB+9RfPmzQno1JmATgF0aN9BFvw3QaR4sQHS4dSMTz7OYPnys2zdNgidznlv4IuKikhLTyU1LZWi4jtHHTXzbEZoSCihoWH4ePvYyUKJpH5xdvFSGUVRvIEc4DshxOwq9hwAbsi0scZDUZGZmJgE/vzncKZO9be3OU6NEILLVy6TlZ1FVtbpn82RATUF26+jX7mY6USzZvLvoikgxYsNkA6nZlitgjGjd9L/kVa89lo3e5vT4FitVs6ezSP9ZDqns05jsVjueL1d23aEhoQRFBSEu97dTlZKJHWnKYkXqEgjuyGEGFbF6wuB4UKIjnetfw0MlgX7jsnh5OuMHbuLXbuHOGWGgKNy4+YNsrKzOHMmh/P55++oI71FyxYtCegUQECnzrRp00ZmMDgpUrzYAOlwas65c6XExiSwYkU/YmJb2Nscm2EwGDiVeYr0E2lcuHjhjtc0Gg3+fv507dKVzgGBuLrKacWSxkVTEi+KorQBTgOLhRD3bJ2jKMpEYCVqZ7Ed5WvNUVslfyuE+PVd+6UvcRA+/SSD777LZfuOIbi6yhtkW2MwGMg7m0vOmRxyzuRQWlr6sz16vR5/v074+/nj7+ePp2fj7mQquY0ULzZAOpzasXz5Wf70+jEOJsbTrFnTy2m9fv066SfTOXEyvcppxV27hNDJv5PM+ZU0CpxVvCiKshJIBo4CBUBX4GWgLRAjhMhQFGUgsAWYLoT4pvw4DbAbdZhl5SGVPVC7lOXddR3pSxwEIQSTJ+8lOKgZH/wt0t7mNGmEEFy8dJGcMzmcOZPDpcv3bO5HC98WFUKmvayVadRI8WIDpMOpPTOmH8TVVcPcz6PtbYrduFXAmHEqg9OnM3/WicXV1ZWgwCCCAoPx9/NDq5VvyBLHxInFyyvA40AQ4ArkAduB924V6yuKMgjYBjwvhPi60rG+wIfAREAP7AN+K4RIucd1pC9xIK5dMxLTJ4GPP+nJ2LHt7W2OpJzi4mLO5KoRmbyzeRiNxp/t0Wq1tG/XviIy06JFC9nBrBEhxYsNkA6n9hQUmOgTncAHf4tkwoQODz7AybFYLOSdzSPj1Emysn8+5OvWtOKgwCD8/Tvh6iJTyySOg7OKF1shfYnjsW/vFaZM2cvefcPw9/ewtzmSu7BarVy8dJHc3DPk5uVy8dJF7nW/6uHhgV9HPzp28KNjh4633qckDooULzZAOpy6sXfPFaZO3cv+A/F06CAL1m9hMpnIOZNDxqkMzuTm/KzQX6vV4u/fiSA5rVjiIEjxUjekL3FMPvzwBKtXnWfzlkG4uMj6F0dGrZXJIy8vl9y8XAoKC+65r/lDzenQoSMdyz+aNZONGRwJKV5sgHQ4ded//zeNzQkX2ZQw0KnbJ9cWo8nImTNnOJ11mpwz2T+LyGg0Gjq070DngEACOgXg5eVlJ0slTRkpXuqG9CWOidUqmDhhN917ePPuu93tbY6kmgghuFlwk9y8XHJzz3Du/Ll7ppgBeHt53yFmPDxklM2eSPFiA/4/e/cdHmWxNn78O7ubbHrvNOkdQQIISlWKgoCvikfkB+ixvIoHPYDlyFFRUM97VGyIx15BRBG7gnqkiBI6Ir1Detn0ZJPs7vz+2LAmEEJJls0m9+e69to8s/PMc2cDmdw7z8xIh1N3drtmzOg19OkbyRNPdPN0OA2azWbjePJx5yZfRw5htZ66W3F4eDitKzf5iouLd+3WLYQ7SfJSN9KXNFxZWWX06/sD/3ktkREj4jwdjjgPDoeDrKwsklOTSU5JJi01lQpbRY11w8PDad6sOQnxCcTHJcj/xwtMkpcLQDqc+pGRYaVf3x94862+XHllrKfD8QrOyf4pHDh4kMNHDlFUVHRKHbPZTMsWrbio1UW0atVK9pIRbiPJS91IX9KwrVmTxaSb17M+6UoSEuT3qLez2+1kZmWSnJxMcmoyaWmpp9yefUJQYBDx8fHExyUQHx9PVGSU7DHjRpK8XADS4dSfVasymTI5ifVJVxIfL53DudBak5OTw+Gjhzl69Ahp6Wmn1FFKERsTS4vK5SRjY2JlVEbUG0le6kb6kobvySd38fN/M1mxcjBGo6xe1ZjY7TbSMzJITkkmJSWZ9Iz00yYzPj4+xMbGER8XT3xcHDExsfLBYD2S5OUCkA6nfs2du5M1q7P4foV0DnVRWlrC0WNHOXzkCMeOH63xXl9fX1+aNWvuWhs/NCRUlpMU502Sl7qRvqThs9s1o69eQ/8BUTz2WFdPhyPcyG63kZmZRVp6GmnpqaSlp9W4WeYJISEhxETHEhsTS2xMDNExMbIi6HmS5OUCkA6nftntmquvWkP/AZHMmSPzX+qD3W4nLT2NI0ePcOz4MXJysmusFxISQsvmLWnRoiXNmzWXFczEOZHkpW6kL/EO6enOW5zffa8fQ4fGeDoccYForcnPzyctPZXUNGdCk5ubW+s5EeERxMTEEhsbS0x0DFGRUbJ55llolMmLUqo58CCQCFwM+AOtT2wWVqWeHzAXmASEAduAB7XWa87QfjwwHRgOtAfKce6s/HhN50qHU//S060M6P8jL718iWwO5gbFxcUcTz7GsePOJSVLSktqrBcVFUXzhOY0a9aMhPhmksyIWknyUjfSl3iPn37K4K+3biBpw3BiY+X3YlNltVrJzMwgIzOTjKwMMjMzKC4uPm19pRRhYWFER0UTFRVNdGQUUVHRsrrZSRpr8jIE+BjYDBiBEdScvCwCRgP3A4eAacBVQH+t9bZa2h8DvAS8A6zHuaPy3ZXnjtVaf31Sfelw3GD9bzlcd906fl41lA4d5H11lxNzZY4dP8bx5GOkpKac9j7f6KhomjVrRrME5yosksyIqiR5qRvpS7zLY4/9wcYNFr7+ZiAGg9xuK5yKiorIyMyoTGoyyMzKpKysrNZzAgMCiYyKciUzUVFRhIWGNdlFARpr8mLQWjsqv74NeIOTkhel1MU4R1pu1Vq/U1lmAnYCe7XWY2tpPwwo0lrbqpSdODdDaz3opPrS4bjJm28c4uUF+/nll2EEB/t4OpwmwWazkZqWSkpKMimpKWRkZuBwOGqseyKZiY9LICE+QT49auIkeakb6Uu8i83mYMTw1YwYGcdDD3X2dDiigTqx30xWViZZ2dlkZ2eRnZNd6wgNOPdvCw+PIDIigojwSCIiIoiIiCA0JLTRJzWNMnmpqpbk5RHgESBMa11Spfxx4CGcb0jtqfCp1/oYSNRatz2pXDocN/rfOzeRm1fOkiX9ZTK5B1RUVJCWnnZWyUxoSKhrOcmE+HjCwyPkZ9aESPJSN9KXeJ/k5BL6X/ojHy3pz+WXR3s6HOFFSkpKyM5xJjMnkprcvFzO9Pe20WgkPCyciAhnQnMiuQkJCWk0SU1TTl6WAL201h1Pqj8B5y1n3bTWO8/hOr7AAeB3rfWYk16TDseNysrsDBu6inHjm/HAA508HU6TV15RTnpaGsmpKaSkJJOZlXnaZMZsNlcuJRlPfHwCsTGxMlmxEZPkpW6kL/FO332XxrS7N7Nh43CiosyeDkd4MZvNRo4lh5ycbHIsFiyWHCwWC0XFp+7hdjKDwUBoSChhYWGEh4UTFhZGWFg44WHh+Pv7e9UHifXVl3jjXxsRQE3LQFiqvH4u5gDNgZtPV2HQoEGuPTPuuOMO7rjjjnO8hKiJ2Wzk46X9uWzAT/ToEcqoUfGeDqlJ8/XxpWXLVrRs2QpwjsxkZGaQVrn6SnpGuuv+3rKyMo4cPcKRo0cA5y/XqKjoyqUkY4mLjSMsLMyrfqkKIURVV10Vz4QbW3LbXzfy2fLLZP6LOG8mk8nVP1ZVVlaGJffPZCbHkoMl11Lt1jOHw0FuXi65ebkc5nC18319fQkLrZ7UhIWFERoSitnceBNubxx5+QEI0lr3P6n+cGAlMEhrvfYsrzER+BCYq7V+rIbX5dOyC+C3X7O5/vpfWbFyMN26hXo6HHEaWmssFku15SQLCgpOW9/X19f1yzo2NpbYmDgCAwMvYMSivsjIS91IX+K9KiocDBv6M9f+T3NmzOh45hOEqAdWqxVLroXcXAt5eXnk5ueRl5tLfkH+ae+IOJmf2Y+QkBBCQkIJDQkhNDS08utQgoKCPHIrWlMeebEALWsoD6/y+hkppa4B3gXeqilxERdO/wFRPPPsxfzPtb+w9pcrZHnKBkopRWRkJJGRkXTr2h2A4pLiypGZNDIyM8jKysRmc66HUV5ezvHk4xxPPu5qIygwqDKRiSUmJpboqGhZ2UwI0WD5+Bj4cNGlXDbgJy4bEEW/SyM9HZJoAvz8/EiIdy6YU5XD4aCgsIC8vDzy8nLJdT3nnrJQgLXMijXLSmZW5intGwwGgoODCQ0JdSU3ISGhBAcHExwU3OBvR/PG5GUncK1SKqDqhH2gC859Ww6cqQGl1BXAJ8By4E63RCnOycSJrdi3r5Drr1vHyh+G4O9v9HRI4iwEBgTSrm072rVtBzg3zbTkWsjIyCAjM52MjAxyLDmu+kXFRRQdKuLgoYOusuDgYKKjYoiOjiY6KpqY6BgZoRFCNBitWgXyysLeTJq0ng0bhxMeLrurC88wGAyEhYYRFhoGrS6q9lp5RTn5eXnkF+STn59PfkEBBQX55BfkU1hYWG3BAIfD4ayTn1/jdYxGoyuRCQ4OJjg45M+vg4IJCgpyTafwBG+8bawnsBWYqrV+r7LMBOwADmitrzlDu/2BH4DVwHitdUUtdWWo/wLSWjNpUhJKwQcf9GvQWb84e+Xl5WRlZZJRuTZ+ekY6RUW1T1IMCAggOiqa6OiYyudoQoJD5N+Eh8htY3UjfUnjMHPGNo4eK+aTTwbI7yLhVex2O0VFReQX5FNQUFD5nO9KdMrLy8+5zcDAwJMSmmA6dOiAv5//ac9ptKuNKaWur/zyCuB/cW4imQVkaa1XV9ZZAozEuUnlYeAuYAwwQGu9pUpbB4CjWusrKo87Ab8CBcBUwFr12lrr9SfFIh3OBVZaamf4lasYPiKOxx7r6ulwhJsUlxSTlZVFVnZW5Rr5WbXOnwHnHJqI8AgiIiKJjHDevhYREUGAf4D8IeFmkrzUjfQljUNZmZ3Bg35mypSLuOvudp4OR4h6Y7VaKSgooLCokMLCQgqLCpzPhYUUFhVSWlp6Vu1MmTT1RF9Ro8Y85+WTk44XVj6vBoZUfn0L8CQwDwgDtgOjqiYulUxA1XGtS3HOjQkHfq7h2vIXkIf5+xtZ9tllDBr4X5o38+evt7XxdEjCDQIDAglsFchFVYa9rVYr2TlZZGZlORObrExy8/5cWLC8vJz0jHTSM9KrteXn50dkxImNviKdq66EhhEUFCRJjRCi3pjNRj74sB+DB/2Xyy6PokePME+HJES98PPzw8/Pj5iYmBpft9lsfyY2lQmN82tnwlNUVITD4bhgt3w3uJGXhkQ+LfOc/fsLuWLYKl5ecAnjxjXzdDjCQ8orysnJziEzOxNLTo5rGckTSzbXxmQyERoaRniY8/7gMNdSkmG1DmuLU8nIS91IX9K4fPjhUf79792sX38lAQEN8TNgIS4srTWlpaUEBATUWq/R3jbWkEiH41lbNudyzTVrWfJxfwYOlB2OhZPWmuLiYmciY8mptuFXhe20U9iqMZvNlaushBASHFK5nGQIwcHOY9lwszpJXupG+pLGZ+qUJAICTCx8tbenQxHCa0jycgFIh+N5P/2UwZTJSXz3/WC6d5c9YMTpaa0pLCp0LiGZn+daSjIvL4+CwgLO5XddYEAgwcHBhFQmOM4JiUEEBTpXWfH19W1St6RJ8lI30pc0PgUFFfTr+wPznuzBddc193Q4QngFSV4uAOlwGoalS4/z0IPb+em/Q2ndWpbQFefObreTX5BfmdDkkZefS0FBgWuC4tlu+nWCj8mHwKAggoKCCAo86bnyaz8/v0aT4EjyUjfSlzROmzZaGDfuF3797QpatZK+SYgzacwT9oWoZsKEFlhyyhg1cjU//DiEli1rv6dSiJMZjUbnSmXhEae85nA4KC4upqDQmcz8+ZxPYUEhRcVFp4zaVNgqKkd1ck9p7wSDwUCAfwABAVUe/gEEBARWKwsMCMDHp2mN5AjRGCT2iWDGzI5MmZzEjz8NwWS68DuWC9EUychLLeTTsoblxRf28dprB/nxpyEkJMiEa3Fh2O12ioqLKC4upqioyPkoLqKoqLDyuYiSkpJzui3tZEajkcCAQPwD/PH388ff3x8/P3/8/fycz/6Vz37++Pn7YfY1YzBcuD+UZOSlbqQvabwcDs2Y0Wvpd2mkLO8vxBnIyItocu69rwPlFQ5GjlzNjz8OITbWz9MhiSbAaDQSGhJKaMjp51w5HA5KSiqTm8okp6SkmJLSEopLSigpKaa0pJSS0pqTHLvd7hzxKax9r5sTlFKYzeY/Exz/ymezH2azGbPr2fnwq3J8IZMeIRo7g0Hx9jt96dvnB4YOjWHQIFlcRgh3k+RFeJX77+9EWZkzgfnhhyFER5s9HZIQGAwGgip3GK6Nw+HAarVSUlJCSakzqSkpcSY4pSUlFJeWYLWWYi21UmotxW6319iO1hqr1YrVaiXvHGP18fFxJTh+lQnNkEFDL9j6/EI0NnFxfrz+RiK3TE1iw8bhREZKvySEO0nyIrzO7NmdKS93MGL4Kr77fjBxcTICI7yDwWBwzXU5E601NpuN0irJjNVaSmmpFWuZFWtpaWWZldLKr8vKyk6b8JxQUVFBRUUFRUVFrrIhg4fW+XsToikbNSqea69tzvTpW1m06FJPhyNEoybJi/A6Sikef7wrZrOBYcN+ZsWKwbRoIZP4ReOilMLHxwcfHx9CgkPO+jybzYa1zEpZWVmVh/PYWsNxeVkZfmb5pFiIupo7rzt9+/7A0qXHmTChhafDEaLRkuRFeCWlFLNndyEwwMQVw37m2+8G065dkKfDEsLjTCYTQSbncs1CiAvH39/I22/15dprf2HgwCji42VhGSHcQWZuCq9239878MADnRl+5Sp27Tq7yc5CCCGEO/TpG8Ffb2vDXXdtrtMKhEKI05PkRXi9225vw5NPdWfkiFX8ui7b0+EIIYRowmbP7kJKcinvvXvE06EI0ShJ8iIahYkTW/HW23254YZf+eyzZE+HI4QQoony9TXw9jt9efjh3zl2rMTT4QjR6EjyIhqNESPi+PqbgcycsY2XXtzn6XCEEA2cUup6pdQypdRRpVSpUmqvUurpyk0lz3Sun1LqGaVUWuW5vymlBl2IuEXD1717KPf8rT3Tp2+R28eEqGeSvIhGpVevcFatHsqbbx1i5oxt2O3SaQghTmsWYAceBkYBrwJ3AT8opc7UP74F3A48CowB0oAVSqme7gtXeJNZszpx6FARn3+e4ulQhGhUlHwicHqVn74VFBQUEBx8xg/iRAOSm1vOxJt+w2BQfPDhpURE+Ho6JCG8VmFhISEhIQAhWutCT8dTX5RS0VrrrJPKJgPvAVdorf97mvMuBrYBt2qt36ksMwE7gb1a67En1Ze+pIlauzaLKZOT2LZ9JCEhPp4ORwiPqq++REZeRKMUHu7LV18PpEuXEC4b8CN//JHv6ZCEEA3MyYlLpY2Vz81qOXUsUAF8XKUtG7AEGKmUko1zBAADB0Zz5ZWxzHnsD0+HIkSjIcmLaLRMJgPPPNuTh2d3YcTwVSxfLhP5hRBnNLjyeXctdboCh7XWJ8/G3gn4Au3cEZjwTk//qwcff3xclvMXop5I8iIavf/3/y7iq68Gcv+s7cyauY2yMrunQxJCNEBKqWbAE8CPWutNtVSNAHJrKLdUef0UgwYNIjExkcTERF5//fW6BSu8RmSkmfvv78TDD//u6VCEaBQkeRFNQu/ECDZsHM6Ro8UMHvQzBw4UeTokIUQDopQKAr4AbMAtZ6oO1DRhVNV20po1a9i0aRObNm3ijjvuOL9AhVe66+627NqZz+rVmZ4ORQivJ8mLaDIiInz55JMBTJ58EYMG/sTixUdlCUshBEopP+BLoA0wUmt9pntMLdQ8uhJe5XUhXMxmI0/M7c7sh3dIvyNEHUnyIpoUpRR3T2vHt98N5l//2s2NN/5GRobV02EJITxEKeUDLAP6AldrrXecxWk7gdZKqYCTyrsA5cCB+o1SNAY33NCC3Lxy1q7N9nQoQng1SV5Ek9SzZxgbNgynfftgEnuv5OOPj8mnYUI0MZV7uSwCrgDGaa3Xn+WpXwI+wA1V2jIBNwIrtdZl9R2r8H5Go2LG3zvy3LN7PB2KEF6tQSUvSqnmSqmXK3cqLlFKaaXURTXUq9POxkqp25VSe5RSZZU7Kv9vfX4fwjv4+Rl58snuLF9+OU89tZvrrvuVw4eLPR2WEOLCeQVnAvIsUKyUurTKozmAUqqVUsqmlHr0xEla6204l0l+QSl1m1LqCpzLJLcGHrvw34bwFjdPasWmTbkcOiTzLoU4Xw0qecG5vOQEnKu4rK2l3nnvbKyUuh14DedtAqOAT4CFSqm76ha68FaJfSLYsOFK+vaNYED/H3n88Z2UlNg8HZYQwv2uqnyeDfx20uO2ytcUYOTU/vIW4B1gHvAN0AIYpbXe4uaYhRfz8zNy/fXNWbLkmKdDEcJrqYZ0q4xSyqC1dlR+fRvwBtBaa32kSp1z2tn4pPZNQCrwndZ6SpXyt3FuOhavta6oUi67Ijcxx46V8OCD29m00cITc7szYUILjMZaFxASotGrr12RmyrpS0RVv/2azbRpW9iydYSnQxHigqqvvqRBjbycSFzOoC47G/cHooEPTyr/AIgELj+ngEWj07JlAB991J833uzDwlf207v3SpYvT5b5MEIIIepFn74RHDlSjMVS7ulQhPBKDSp5OUt12dm4a+XzHzWcC86VYoRgyJAY1qwdxlNP9eCpJ3eT2PsH3n3nMFarbHAphBDi/JlMBi6+OIzff8/zdChCeCVvTF7Oa2fjk147+fyzOVc0MUoprr46nqQNV/L0v3qwfHkybdt8w6pVssmYEOLCee6550hISCAhIYGhQ4cCcOONN7rK7r//fgDatGnjKlu6dCk7duxwHSckJHD48GHefvtt13GPHj0AuPvuu11lf/3rXwHo06ePq+w///kPqamp1dravHkzX3zxheu4efPmAPzzn/90lY0fPx6AkSNHusqefPJJrFZrtbZWrlzJ2rVrq5Xl5uby/PPPu44HDXKuyTNx4kRX2cyZMwFo3769q2zJkiXs2rWrWlsHDx7kvffecx137er8HPOee+5xlU2dOhWAfv36ucpeeeUV0tPTq7W1YcMGvv7662plAI899pjreNy4cQBcffXVrrJ58+ZRUVHhOt6yZSm//bqRX3/9tVpbFouFF1980XV8+eXOG0ImTZrkKvv73/8OQMeOHV1lixcvZs+ePdXa2r9/Px9++KHruEsX5+ez9957r6tsyhTnHfQDBgxwlS1YsICsrKxqbSUlJfHtt99WK7Pb7Tz++OOu4zFjxgAwZswYV9njjz+O3W6vdt63335LUlJStbKsrCwWLFjgOh4wYAAAU6ZMcZXde++9AHTp0sVV9uGHH7J///5qbe3Zs4fFixe7jjt27AjA3//+d1fZpEmTALj88stdZS+++CIWi6VaW7/++isrVqyoVlZRUcG8efNcx1dffTUA48aNc5U99phz3Y6q53399dds2LChWll6ejqvvPKK67hfv34ATJ061VV2zz33ANC1a1dX2XvvvcfBgwertbVr1y6WLFniOm7fvj0AM2fOdJVNnDgRgEGDBrnKnn/+eXJzc6u1tXbtWlauXFmtzGq18uSTT7qOR44cCcD48eNJSEjgueeeO6ffa3WitW6QD5yTJTVw0UnlPwC/1VB/eGX9gbW0ObuyjvmkclNl+SMnlQcDumfPnrp37966d+/e+rXXXtNn69lnn9Xx8fE6Pj5eDxkyRGut9YTpmHqZAAAgAElEQVQJE1xls2bN0lpr3bp1a1fZxx9/rH///XfXcXx8vD506JB+6623XMfdu3fXWmt91113ucpuvfVWrbXWiYmJrrJXX31Vp6SkVGtr06ZN+vPPP3cdN2vWTGut9ezZs11l48aN01prPWLECFfZvHnzdGlpabW2VqxYodesWVOtzGKx6Pnz57uOBw4cqLXW+qabbnKVzZgxQ2utdbt27VxlH330kd65c2e1tg4cOKDfffdd13GXLl201lpPmzbNVTZlyhSttdZ9+/Z1lS1YsECnpaVVayspKUl/9dVX1cq01vrRRx91HY8dO1ZrrfVVV13lKps7d64uLy93HcdE99BLl36r161bV62tnJwc/cILL7iOL7vsMq211jfffLOr7L777tNaa92hQwdX2aJFi/Tu3burtbVv3z79wQcfuI47d+6stdZ6+vTprrLJkydrrbXu37+/q+zll1/WmZmZ1dpav369/uabb6qV2Ww2PWfOHNfx6NGjtdZajx492lU2Z84cbbPZqp33zTff6PXr11cry8zM1C+//LLruH///lprrSdPnuwqmz59utZa686dO7vKPvjgA71v375qbe3evVsvWrTIddyhQwettdb33Xefq+zmm2/WWmt92WWXucpeeOEFnZOTU62tdevW6e+//75aWXl5uZ47d67r+KqrrtJaaz127FhX2aOPPqq11tXO++qrr3RSUlK1srS0NL1gwQLXcd++fbXWWk+ZMsVVNm3aNK211l26dHGVvfvuu/rAgQPV2tq5c6f+6KOPXMft2rXTWms9Y8YMV9lNN92ktdZ64MCBrrL58+dri8VSra01a9boFStWVCsrLS3V8+bNcx2PGDFCa631uHHjdHx8vH722WfP+LusoKBAV/6ODNYNoH/wtseJvqSgoOCM77UQQjRW9dWXNKgJ+1XVMmH/Y6Cn1rrjSfUn4JwH001rvZMaVK4othBI0FqnVSmPATKAe7TWr1Qpl0mWQogmTybs1430JUII0Ugn7J+luuxsfCKp6XpS+Ym5LrvqHp4QQgghhBDCHbwxeanLzsa/AdnAzSeVT8I572Vd/YYqhBBCCCGEqC8mTwdwMqXU9ZVf9q58vkoplQVkaa1Xa623Vd469oJSygc4DNyFc2fjm09q6wBwVGt9BYDWukIp9QjOTSlTgB+BYcCtwN+01rJuoRBCCCGEEA1UQxx5+aTy8b+Vxwsrjx+vUudsdzY24dwZ2UVr/R+cyc4EYAVwEyfNdakvr7/+en032SQ1tfexqX2/tZH3wv3kPW745GdUP5ra+9jUvt/ayHvhfhfyPW5wyYvWWp3mMaRKnVKt9QytdZzW2k9r3U9rvaqGti6qel6V8te01h201matdXut9cLzjferr7467Wt1+UHW1q47zj/b+mdTr7Y65/NaQ/2lU9ef0en8+9//rtP55xNXff385Wfv2bbP59y6/nsT9UP6knOrI79Pzkz6kj81tZ99Xdtu6H1Jg7ttrCFKTU097QoxS5YsoXfv3jW+Vl5eTmpq6nlds7Z23XH+2dY/m3q11Tmf1+ryPrpTXX9Gp2OxWOr0/Z5PXPX185efvWfbPp9zz+bfW2GhLDBWH6QvObd68vukbqQv+VNT+9nXte2G3pc02KWSGwKl1MXANk/HIYQQDURPrfV2TwfhbaQvEUKIaurUl0jyUosTa/OnpKTI2vxCiCarsLCQZs2agezzcl6kLxFCiPrrS+S2sbMQHBwsHY4QQog6kb5ECCHqrsFN2BdCCCGEEEKImkjyIoQQQgghhPAKkrwIIYQQQgghvIIkL0IIIYQQQgivIBP2hRBCiAbI4XCQnJJMfn4+0VFRxMXFezokIYTwOBl5EUIIIRqo997/klumfs3qn//r6VCEEKJBkORFCCGEaIAMBgMhJgN79zQnLyODtLQ0Hn30UU+HJYQQHiXJixBCCNFAtUgIxOEw42sMwGQy0atXLwAefvhh1q1bB4BsNi2EaEokeRFCCCEaqLCYaCIibBxJtxMdHc21114LwE033USnTp3YtWsXI0aMAKC4uNiToQohxAXhlcmLUmqIUkrX8Mg7x3b+UXneL+6KVQghhDhfodGxRETaSbeYsFqtrvLu3bsTGRlJ586deffddwG48847+fLLL7Hb7Rw8eNBDEQshhHt5+2pj04GNVY5tZ3uiUqoNMBvIrO+ghBBCiPoQGhpKRKQdS46RgoIC/Pz8qr2ulKJZs2YAvP/++zgcDg4fPsy0adNYsWIFmzZtonnz5sTFxXkifCGEqHdeOfJSxW6t9foqj03ncO6rwCJgt5tiE0IIIeokNCSEyEg7OTkm8gvya61rMBgwmUy0a9eOFStWAPDjjz+yd+9eiouLee211y5EyEII4VbenrycF6XUROAS4B/uaF9rzaHDB9m5aydp6WnuuIQQQogmICQklMgoG5YcI/n553RnNAAPPfQQgwcPpqCggPx8Z/Lz1ltvkZSUVN+hCiHEBeHtycsipZRdKZWjlFqslGp5phOUUuHA88ADWmuLO4JSSvHpx8t55JHVHNv7ozsuIYQQogkwm83ERdrJyTGSn3b+H4bFx8fzwAMPANCqVSsiIyPJyMhg3LhxaK1xOBz1FbIQQriVtyYv+cBzwG3AMGAucCXwm1Iq5gznPgPsA94924sNGjSIxMREEhMTef3118/qnNFjPmLHdgPNW35wtpcRQgghTtE63oQlx0Redna9tHfllVfSrl07wsLCeOSRR1BKcc899/DRRx8BkJ6eXi/XEUIId/DKCfta663A1ipFq5VSa4ANOCfx/7Om85RSA4HJwCX6HBbGX7NmDcHBwecUY3CAg+zsQIzGgnM6TwghhKgqJj4Cs9lGcnppvbZrNptJTEwE4Pnnn8dms5GZmcmIESPYvn07u3fvJiwsjISEhHq9rhBC1IW3jrycQmu9BeeISp9aqr0GvAUkK6XClFJhOBM4Y+Wxub7i8TWZqKgwUuEoq68mhRBCNEGhcc7lko9lK7fd3mU2mwkMDCQmJobt27ejlOLnn39m/fr1OBwOXnrpJex2u1uuLYQQ58IrR15qoYDaRlQ6Vz7+t4bXcoG/Ay/URyAOezBRUcUUl6r6aE4IIUQTFRoWTkTkYXJyfCgsKiQ0JNSt11PK2W9NmzYNgIKCAnJycjAajSxZsoTQ0FCuuuoqt8YghBCn02iSF6VUItABWFpLtaE1lL0AGIG/AQfqKx6HiiIysojCokbzFgshhPCA0JBQIiPtWCzOvV7cnbycLCQkhMcffxyAdu3aYTabKS0tZeTIkfz444+uJZqFEOJC8MrfNkqpRcBhYAuQB/TCuexxCvByZZ1WwEHgCa31EwBa61U1tJUHmGp6rU5M8URFFVFQ4IvdXorR6F+vzQshhGgaQkJCiIy0cfiQL3mWHFo0b+GxWE7MkbHb7bz00kv4+voyd+5c/P39mTVrFvv27aN9+/au0RshhKhv3jrn5Q9gLPAOsAK4D/gM6Ke1PrEci8I5ouKR71EZooiMKiY7O4iyMlm5RQghxPkJDgomMsq5XHLukSOeDgcAo9FIz549AZg9ezZ33XUX5eXlTJw4kdLSUnbt2sXmzZs9HKUQojHyyuRFa/201rqH1jpUa+2jtW6htb5Da51Wpc4RrbXSWs85Q1tDtNaX13eMBkMUUZFF5GQHUVYuG1UKIYQ4PwaDgYvifcjJMZGXmenpcE5hMBgIDAzE19eXTZs2ERAQwJEjR9izZw8AjzzyCHl5577BphBC1MQrbxvzBiZjDJFRSWTnBGGryPB0OEIIIbxY6w4RFBdXkJlf7OlQzsrVV18NgMPhIC4ujuDgYJYtW8bBgwd54IEHsNlsMk9GCHFevHLkxRsoQx8OH+7FmjWXk5ffxdPhCCGE8GLRMdFERNg5YvFx23LJ7mAwGJg2bRpGo5HBgwczfvx4AHr27Mnx48fJy8uTTTGFEOdEkhc38feLRBn9KSjwxWqVvV6EEEKcv7CwMKKjbWRm+1BQ6J2bH0dFRdGhQwcA1q9fT4sWLVi/fj1PPvkkAF9//TUWi8WTIQohvIAkL27i5+dHYKCD4mIDJcWFng5HCCGEFwsLCyc6xkZWloncnBxPh1NnQUFBAIwaNYqXX34ZgNWrV1NWVsbu3btdZUIIcTJJXtzEaDQS6l/mTF6ykj0djhBCiJMopYYopXQNjzPOLldK+SmlnlFKpSmlSpVSvymlBrkr1vCwcKKibWRlmsjZv89dl/GoZ555hvj4eAICAmjdujUAkydPZv