version 4.2 authored by Udo Ziegler's avatar Udo Ziegler
...@@ -413,7 +413,7 @@ the following criteria: ...@@ -413,7 +413,7 @@ the following criteria:
<0.8\mathcal{E}_{U} & \forall U \quad\hbox{derefinement}\\ <0.8\mathcal{E}_{U} & \forall U \quad\hbox{derefinement}\\
\end{array}\right.$$ \end{array}\right.$$
![amr_deriv](uploads/25c608e1a335aca4242b34afb9e4ffeb/amr_deriv.png) ![amr_deriv](uploads/25c608e1a335aca4242b34afb9e4ffeb/amr_deriv.png){width=80%}
The criterion is applied to physical variables $U$ The criterion is applied to physical variables $U$
($=\{\varrho,\mathbf{m},e,\mathbf{B},C_\mathrm{c}\}$). Undivided ($=\{\varrho,\mathbf{m},e,\mathbf{B},C_\mathrm{c}\}$). Undivided
first ($\delta U$) and second ($\delta^2U$) differences are computed along first ($\delta U$) and second ($\delta^2U$) differences are computed along
...@@ -444,7 +444,7 @@ the following criteria: ...@@ -444,7 +444,7 @@ the following criteria:
>1.25\delta s & \mbox{derefinement}\\ >1.25\delta s & \mbox{derefinement}\\
\end{array}\right.$ \end{array}\right.$
![amr_Jeans](uploads/57691ce992d4c86be15b6e7b5637166b/amr_Jeans.png) ![amr_Jeans](uploads/57691ce992d4c86be15b6e7b5637166b/amr_Jeans.png){width=80%}
where the first factor is the local Jeans where the first factor is the local Jeans
length with $c_s$ the sound speed and $G$ the gravitational length with $c_s$ the sound speed and $G$ the gravitational
constant, and where $\delta s=\min\{\delta x,h_y\delta y, h_z\delta z\}$. constant, and where $\delta s=\min\{\delta x,h_y\delta y, h_z\delta z\}$.
...@@ -461,7 +461,7 @@ the following criteria: ...@@ -461,7 +461,7 @@ the following criteria:
>1.25\delta s & \mbox{derefinement}\\ >1.25\delta s & \mbox{derefinement}\\
\end{array}\right.$$ \end{array}\right.$$
![amr_Field](uploads/de458510a631f1c2c18766c32f92eff1/amr_Field.png){width=50%} ![amr_Field](uploads/de458510a631f1c2c18766c32f92eff1/amr_Field.png){width=80%}
where the first factor is the Field length with where the first factor is the Field length with
$L(\varrho, T)$ the density- and temperature-dependent heatloss $L(\varrho, T)$ the density- and temperature-dependent heatloss
function and $\kappa$ the thermal conduction coefficient. function and $\kappa$ the thermal conduction coefficient.
... ...
......