version 4.2 authored by Udo Ziegler's avatar Udo Ziegler
...@@ -437,11 +437,12 @@ the following criteria: ...@@ -437,11 +437,12 @@ the following criteria:
side) to decide whether a child block is to be created. side) to decide whether a child block is to be created.
- Jeans-length-based (important in simulations involving selfgravity): - Jeans-length-based (important in simulations involving selfgravity):
$$\left(\frac{\pi}{G}\frac{c_s^2}{\varrho}\right)^{1/2} $\left(\frac{\pi}{G}\frac{c_s^2}{\varrho}\right)^{1/2}
\cdot \mathcal{E}_\mathrm{Jeans}\left\{\begin{array}{ll} \cdot \mathcal{E}_\mathrm{Jeans}\left\{\begin{array}{ll}
<\delta s & \mbox{refinement}\\ <\delta s & \mbox{refinement}\\
>1.25\delta s & \mbox{derefinement}\\ >1.25\delta s & \mbox{derefinement}\\
\end{array}\right.$$ where the first factor is the local Jeans \end{array}\right.$
where the first factor is the local Jeans
length with $c_s$ the sound speed and $G$ the gravitational length with $c_s$ the sound speed and $G$ the gravitational
constant, and where $\delta s=\min\{\delta x,h_y\delta y, h_z\delta z\}$. constant, and where $\delta s=\min\{\delta x,h_y\delta y, h_z\delta z\}$.
$\mathcal{E}_\mathrm{Jeans}$ is a user-specific threshold giving the $\mathcal{E}_\mathrm{Jeans}$ is a user-specific threshold giving the
...@@ -455,7 +456,8 @@ the following criteria: ...@@ -455,7 +456,8 @@ the following criteria:
\right)^{1/2}\cdot \mathcal{E}_\mathrm{Field}\left\{\begin{array}{ll} \right)^{1/2}\cdot \mathcal{E}_\mathrm{Field}\left\{\begin{array}{ll}
<\delta s & \mbox{refinement}\\ <\delta s & \mbox{refinement}\\
>1.25\delta s & \mbox{derefinement}\\ >1.25\delta s & \mbox{derefinement}\\
\end{array}\right.$$ where the first factor is the Field length with \end{array}\right.$$
where the first factor is the Field length with
$L(\varrho, T)$ the density- and temperature-dependent heatloss $L(\varrho, T)$ the density- and temperature-dependent heatloss
function and $\kappa$ the thermal conduction coefficient. function and $\kappa$ the thermal conduction coefficient.
$\mathcal{E}_\mathrm{Field}$ is a user-specific threshold giving the $\mathcal{E}_\mathrm{Field}$ is a user-specific threshold giving the
... ...
......