| ... | ... | @@ -184,8 +184,8 @@ struct type `GRD`, i.e. `*GRD`. The `GRD` struct type is declared in the |
|
|
|
header file `nirvana.h` and contains all grid information (attributes,
|
|
|
|
coordinates, variables arrays, etc.). Dereferencing `gm` to `gm[l]`,
|
|
|
|
gives the first superblock in a linked list collecting all superblocks
|
|
|
|
belonging to mesh refinement level `l`. `gm[l]`, like any superblock, is
|
|
|
|
of `GRD` type, i.e., a pointer to struct `GRD`. The base level, `l`=0$,
|
|
|
|
belonging to mesh refinement level $l$. `gm[l]`, like any superblock, is
|
|
|
|
of `GRD` type, i.e., a pointer to struct `GRD`. The base level, $l=0$,
|
|
|
|
spanning the computational domain starts with pointer `gm[0]`. In
|
|
|
|
uniform grid simulations that is the only list existing. The superblocks
|
|
|
|
of a refinement level $l$ are obtained by running through the
|
| ... | ... | @@ -324,11 +324,11 @@ Elements V of struct `GRD`: |
|
|
|
|
|
|
|
| V (grid metrics) | description |
|
|
|
|
|:---------------------------|:----------------------------------------------------------------------------------------------------|
|
|
|
|
| `dv[iy][ix]` | volume *δ* *V* ( = *δ* *V*<sub>*x*</sub> ⋅ *δ* *V*<sub>*y*</sub> ⋅ *δ* *z*) of a numerical cell |
|
|
|
|
| `dvx[ix]` | *x*-dependent part, *δ* *V*<sub>*x*</sub>, of cell volume |
|
|
|
|
| `dvy[iy]` | *y*-dependent part, *δ* *V*<sub>*y*</sub>, of cell volume |
|
|
|
|
| `dvyf[iy]` | *y*-dependent part, *δ* *V*<sub>*y*</sub>, of cell volume at face-centroid coordinates |
|
|
|
|
| `dax[ix]` | vector storing |
|
|
|
|
| `dv[iy][ix]` | volume *δ* *V* ( = *δ* *V*<sub>*x*</sub> ⋅ *δ* *V*<sub>*y*</sub> ⋅ *δ* *z*) of a numerical cell |
|
|
|
|
| `dvx[ix]` | *x*-dependent part, *δ* *V*<sub>*x*</sub>, of cell volume |
|
|
|
|
| `dvy[iy]` | *y*-dependent part, *δ* *V*<sub>*y*</sub>, of cell volume |
|
|
|
|
| `dvyf[iy]` | *y*-dependent part, *δ* *V*<sub>*y*</sub>, of cell volume at face-centroid coordinates |
|
|
|
|
| `dax[ix]` | *x*-dependent part of *xy*/*xz*-cell face surface |
|
|
|
|
| `hy[ix]` | metric scale factor *h*<sub>*y*</sub>(*x*) at cell-nodal coordinates |
|
|
|
|
| `hyh[ix]` | metric scale factor *h*<sub>*y*</sub>(*x*) at cell-center coordinates |
|
|
|
|
| `hyc[ix]` | metric scale factor *h*<sub>*y*</sub>(*x*) at cell-centroid coordinates |
|
| ... | ... | @@ -364,9 +364,9 @@ where (`g->x[ix]`,`g->y[iy]`,`g->z[iz]`) are the nodal coordinates of |
|
|
|
the lower cell corner. Cell-centroid coordinates locate the volume
|
|
|
|
center of a cell and face-centroid coordinates locate the face centers
|
|
|
|
of a cell. Their definition for cylindrical- and spherical geometry is
|
|
|
|
given in the table below where $\D_\mix$ ($\D_\miy$) denotes the
|
|
|
|
difference operator, $\D_\mix U=U_{{\tt ix}+1}-U_{\tt ix}$ and analog
|
|
|
|
for $\D_\miy$. Half-index subscripts mean evaluation at the geometric
|
|
|
|
given in the table below where $\Delta_{\tt ix}$ ($\Delta_{\tt iy}$) denotes the
|
|
|
|
difference operator, $\Delta_{\tt ix} U=U_{{\tt ix}+1}-U_{\tt ix}$ and analog
|
|
|
|
for $\Delta_{\tt iy}$. Half-index subscripts mean evaluation at the geometric
|
|
|
|
center, i.e., at cell-centered coordinates. At certain cell locations
|
|
|
|
centroid coordinates and centered coordinates coincide which, in
|
|
|
|
general, is true in Cartesian geometry.
|
| ... | ... | |