version 4.2 authored by Udo Ziegler's avatar Udo Ziegler
......@@ -195,7 +195,7 @@ in that list the next superblock is given by the 'next grid' operator
The list ends if the next grid pointer is a NULL pointer. The following
image illustrates the linked list concept.
![linked-list-concept](uploads/7e311eea207cfd20102f732360c219c5/linked-list-concept.png)
![linked-list-concept](uploads/7e311eea207cfd20102f732360c219c5/linked-list-concept.png){width=80%}
Assuming a serial run for the moment, looping over all superblocks `g`
of mesh refinement level $l$ (index `il`) is as simple as
......@@ -405,15 +405,9 @@ individually selected by the user. The standard implementation covers
the following criteria:
- derivatives-based (most important in practice):
$$\left[\alpha\frac{|\delta U|}{|U|+U_\mathrm{ref}}+(1-\alpha)
\frac{|\delta^2U|}{|\delta U|+{\rm FILTER}\cdot(|U|+U_\mathrm{ref})}\right]
\left(\frac{\delta x^{(l)}}{\delta x^{(0)}}\right)^{\xi}
\left\{\begin{array}{ll}
>\mathcal{E}_{U} &\exists U \quad\hbox{refinement}\\
<0.8\mathcal{E}_{U} & \forall U \quad\hbox{derefinement}\\
\end{array}\right.$$
![amr_deriv](uploads/25c608e1a335aca4242b34afb9e4ffeb/amr_deriv.png){width=80%}
The criterion is applied to physical variables $U$
($=\{\varrho,\mathbf{m},e,\mathbf{B},C_\mathrm{c}\}$). Undivided
first ($\delta U$) and second ($\delta^2U$) differences are computed along
......@@ -438,13 +432,9 @@ the following criteria:
side) to decide whether a child block is to be created.
- Jeans-length-based (important in simulations involving selfgravity):
$\left(\frac{\pi}{G}\frac{c_s^2}{\varrho}\right)^{1/2}
\cdot \mathcal{E}_\mathrm{Jeans}\left\{\begin{array}{ll}
<\delta s & \mbox{refinement}\\
>1.25\delta s & \mbox{derefinement}\\
\end{array}\right.$
![amr_Jeans](uploads/57691ce992d4c86be15b6e7b5637166b/amr_Jeans.png){width=80%}
where the first factor is the local Jeans
length with $c_s$ the sound speed and $G$ the gravitational
constant, and where $\delta s=\min\{\delta x,h_y\delta y, h_z\delta z\}$.
......@@ -454,14 +444,9 @@ the following criteria:
- Field-length-based (potentially relevant for simulations involving a
heatloss source but rarely used in practice):
$$2\pi \left(\frac{\kappa T}{\max\left\{T\left(\frac{\partial L}{\partial T}\right)_{\varrho}
-\varrho \left(\frac{\partial L}{\partial \varrho}\right)_{T},EPS\right\}}
\right)^{1/2}\cdot \mathcal{E}_\mathrm{Field}\left\{\begin{array}{ll}
<\delta s & \mbox{refinement}\\
>1.25\delta s & \mbox{derefinement}\\
\end{array}\right.$$
![amr_Field](uploads/de458510a631f1c2c18766c32f92eff1/amr_Field.png){width=80%}
where the first factor is the Field length with
$L(\varrho, T)$ the density- and temperature-dependent heatloss
function and $\kappa$ the thermal conduction coefficient.
......
......