Changes
Page history
version 4.2
authored
Oct 28, 2025
by
Udo Ziegler
Show whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.1-Code-basics.md
View page @
6ad22983
...
...
@@ -195,7 +195,7 @@ in that list the next superblock is given by the 'next grid' operator
The list ends if the next grid pointer is a NULL pointer. The following
image illustrates the linked list concept.


{width=80%}
Assuming a serial run for the moment, looping over all superblocks
`g`
of mesh refinement level $l$ (index
`il`
) is as simple as
...
...
@@ -405,15 +405,9 @@ individually selected by the user. The standard implementation covers
the following criteria:
-
derivatives-based (most important in practice):
$$
\l
eft[
\a
lpha
\f
rac{|
\d
elta U|}{|U|+U_
\m
athrm{ref}}+(1-
\a
lpha)
\f
rac{|
\d
elta^2U|}{|
\d
elta U|+{
\r
m FILTER}
\c
dot(|U|+U_
\m
athrm{ref})}
\r
ight]
\l
eft(
\f
rac{
\d
elta x^{(l)}}{
\d
elta x^{(0)}}
\r
ight)^{
\x
i}
\l
eft
\{\b
egin{array}{ll}
>\mathcal{E}_{U} &\exists U \quad\hbox{refinement}\\
<0.8
\m
athcal{E}_{U} &
\f
orall U
\q
uad
\h
box{derefinement}
\\
\e
nd{array}
\r
ight.$$

{width=80%}
The criterion is applied to physical variables $U$
($=\{\varrho,\mathbf{m},e,\mathbf{B},C_\mathrm{c}\}$). Undivided
first ($\delta U$) and second ($\delta^2U$) differences are computed along
...
...
@@ -438,13 +432,9 @@ the following criteria:
side) to decide whether a child block is to be created.
-
Jeans-length-based (important in simulations involving selfgravity):
$
\l
eft(
\f
rac{
\p
i}{G}
\f
rac{c_s^2}{
\v
arrho}
\r
ight)^{1/2}
\c
dot
\m
athcal{E}_
\m
athrm{Jeans}
\l
eft
\{\b
egin{array}{ll}
<
\d
elta s &
\m
box{refinement}
\\
>1.25\delta s & \mbox{derefinement}\\
\e
nd{array}
\r
ight.$

{width=80%}
where the first factor is the local Jeans
length with $c_s$ the sound speed and $G$ the gravitational
constant, and where $\delta s=\min\{\delta x,h_y\delta y, h_z\delta z\}$.
...
...
@@ -454,14 +444,9 @@ the following criteria:
-
Field-length-based (potentially relevant for simulations involving a
heatloss source but rarely used in practice):
$$2
\p
i
\l
eft(
\f
rac{
\k
appa T}{
\m
ax
\l
eft
\{
T
\l
eft(
\f
rac{
\p
artial L}{
\p
artial T}
\r
ight)_{
\v
arrho}
-
\v
arrho
\l
eft(
\f
rac{
\p
artial L}{
\p
artial
\v
arrho}
\r
ight)_{T},EPS
\r
ight
\}
}
\r
ight)^{1/2}
\c
dot
\m
athcal{E}_
\m
athrm{Field}
\l
eft
\{\b
egin{array}{ll}
<
\d
elta s &
\m
box{refinement}
\\
>1.25\delta s & \mbox{derefinement}\\
\e
nd{array}
\r
ight.$$

{width=80%}
where the first factor is the Field length with
$L(\varrho, T)$ the density- and temperature-dependent heatloss
function and $\kappa$ the thermal conduction coefficient.
...
...
...
...