| ... | ... | @@ -195,7 +195,7 @@ in that list the next superblock is given by the 'next grid' operator |
|
|
|
The list ends if the next grid pointer is a NULL pointer. The following
|
|
|
|
image illustrates the linked list concept.
|
|
|
|
|
|
|
|

|
|
|
|
{width=80%}
|
|
|
|
|
|
|
|
Assuming a serial run for the moment, looping over all superblocks `g`
|
|
|
|
of mesh refinement level $l$ (index `il`) is as simple as
|
| ... | ... | @@ -405,15 +405,9 @@ individually selected by the user. The standard implementation covers |
|
|
|
the following criteria:
|
|
|
|
|
|
|
|
- derivatives-based (most important in practice):
|
|
|
|
$$\left[\alpha\frac{|\delta U|}{|U|+U_\mathrm{ref}}+(1-\alpha)
|
|
|
|
\frac{|\delta^2U|}{|\delta U|+{\rm FILTER}\cdot(|U|+U_\mathrm{ref})}\right]
|
|
|
|
\left(\frac{\delta x^{(l)}}{\delta x^{(0)}}\right)^{\xi}
|
|
|
|
\left\{\begin{array}{ll}
|
|
|
|
>\mathcal{E}_{U} &\exists U \quad\hbox{refinement}\\
|
|
|
|
<0.8\mathcal{E}_{U} & \forall U \quad\hbox{derefinement}\\
|
|
|
|
\end{array}\right.$$
|
|
|
|
|
|
|
|
{width=80%}
|
|
|
|
|
|
|
|
The criterion is applied to physical variables $U$
|
|
|
|
($=\{\varrho,\mathbf{m},e,\mathbf{B},C_\mathrm{c}\}$). Undivided
|
|
|
|
first ($\delta U$) and second ($\delta^2U$) differences are computed along
|
| ... | ... | @@ -438,13 +432,9 @@ the following criteria: |
|
|
|
side) to decide whether a child block is to be created.
|
|
|
|
|
|
|
|
- Jeans-length-based (important in simulations involving selfgravity):
|
|
|
|
$\left(\frac{\pi}{G}\frac{c_s^2}{\varrho}\right)^{1/2}
|
|
|
|
\cdot \mathcal{E}_\mathrm{Jeans}\left\{\begin{array}{ll}
|
|
|
|
<\delta s & \mbox{refinement}\\
|
|
|
|
>1.25\delta s & \mbox{derefinement}\\
|
|
|
|
\end{array}\right.$
|
|
|
|
|
|
|
|
{width=80%}
|
|
|
|
|
|
|
|
where the first factor is the local Jeans
|
|
|
|
length with $c_s$ the sound speed and $G$ the gravitational
|
|
|
|
constant, and where $\delta s=\min\{\delta x,h_y\delta y, h_z\delta z\}$.
|
| ... | ... | @@ -454,14 +444,9 @@ the following criteria: |
|
|
|
|
|
|
|
- Field-length-based (potentially relevant for simulations involving a
|
|
|
|
heatloss source but rarely used in practice):
|
|
|
|
$$2\pi \left(\frac{\kappa T}{\max\left\{T\left(\frac{\partial L}{\partial T}\right)_{\varrho}
|
|
|
|
-\varrho \left(\frac{\partial L}{\partial \varrho}\right)_{T},EPS\right\}}
|
|
|
|
\right)^{1/2}\cdot \mathcal{E}_\mathrm{Field}\left\{\begin{array}{ll}
|
|
|
|
<\delta s & \mbox{refinement}\\
|
|
|
|
>1.25\delta s & \mbox{derefinement}\\
|
|
|
|
\end{array}\right.$$
|
|
|
|
|
|
|
|
{width=80%}
|
|
|
|
|
|
|
|
where the first factor is the Field length with
|
|
|
|
$L(\varrho, T)$ the density- and temperature-dependent heatloss
|
|
|
|
function and $\kappa$ the thermal conduction coefficient.
|
| ... | ... | |