Changes
Page history
version 4.2
authored
Oct 28, 2025
by
Udo Ziegler
Show whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.1-Code-basics.md
View page @
80b51db9
...
@@ -413,6 +413,7 @@ the following criteria:
...
@@ -413,6 +413,7 @@ the following criteria:
<0.8
\m
athcal{E}_{U} &
\f
orall U
\q
uad
\h
box{derefinement}
\\
<0.8
\m
athcal{E}_{U} &
\f
orall U
\q
uad
\h
box{derefinement}
\\
\e
nd{array}
\r
ight.$$
\e
nd{array}
\r
ight.$$

The criterion is applied to physical variables $U$
The criterion is applied to physical variables $U$
($=
\{\v
arrho,
\m
athbf{m},e,
\m
athbf{B},C_
\m
athrm{c}
\}
$). Undivided
($=
\{\v
arrho,
\m
athbf{m},e,
\m
athbf{B},C_
\m
athrm{c}
\}
$). Undivided
first ($
\d
elta U$) and second ($
\d
elta^2U$) differences are computed along
first ($
\d
elta U$) and second ($
\d
elta^2U$) differences are computed along
...
@@ -442,6 +443,8 @@ the following criteria:
...
@@ -442,6 +443,8 @@ the following criteria:
<
\d
elta s &
\m
box{refinement}
\\
<
\d
elta s &
\m
box{refinement}
\\
>1.25\delta s & \mbox{derefinement}\\
>1.25\delta s & \mbox{derefinement}\\
\e
nd{array}
\r
ight.$
\e
nd{array}
\r
ight.$

where the first factor is the local Jeans
where the first factor is the local Jeans
length with $c_s$ the sound speed and $G$ the gravitational
length with $c_s$ the sound speed and $G$ the gravitational
constant, and where $
\d
elta s=
\m
in
\{\d
elta x,h_y
\d
elta y, h_z
\d
elta z
\}
$.
constant, and where $
\d
elta s=
\m
in
\{\d
elta x,h_y
\d
elta y, h_z
\d
elta z
\}
$.
...
@@ -457,6 +460,8 @@ the following criteria:
...
@@ -457,6 +460,8 @@ the following criteria:
<
\d
elta s &
\m
box{refinement}
\\
<
\d
elta s &
\m
box{refinement}
\\
>1.25\delta s & \mbox{derefinement}\\
>1.25\delta s & \mbox{derefinement}\\
\e
nd{array}
\r
ight.$$
\e
nd{array}
\r
ight.$$

where the first factor is the Field length with
where the first factor is the Field length with
$L(
\v
arrho, T)$ the density- and temperature-dependent heatloss
$L(
\v
arrho, T)$ the density- and temperature-dependent heatloss
function and $
\k
appa$ the thermal conduction coefficient.
function and $
\k
appa$ the thermal conduction coefficient.
...
...
...
...