version 4.2 authored by Udo Ziegler's avatar Udo Ziegler
...@@ -389,9 +389,9 @@ The mesh refinement algorithm relies on the oct-tree data structure of ...@@ -389,9 +389,9 @@ The mesh refinement algorithm relies on the oct-tree data structure of
generic blocks (fixed size of 4 cells per direction) represented by the generic blocks (fixed size of 4 cells per direction) represented by the
master mesh pointer `_G0` (of type `*GRD`). A generic block of master mesh pointer `_G0` (of type `*GRD`). A generic block of
refinement level $l$ has cell spacings refinement level $l$ has cell spacings
$(\d x^{(l)}, \d y^{(l)}, \d z^{(l)})= $(\delta x^{(l)}, \delta y^{(l)}, \delta z^{(l)})=
(\d x^{(0)},\d y^{(0)},\d z^{(0)})/2^l$ where (\delta x^{(0)},\delta y^{(0)},\delta z^{(0)})/2^l$ where
$(\d x^{(0)},\d y^{(0)},\d z^{(0)})$ is the cell spacing of the base $(\delta x^{(0)},\delta y^{(0)},\delta z^{(0)})$ is the cell spacing of the base
level, i.e., resolution doubles each time when refined. level, i.e., resolution doubles each time when refined.
Starting on the base level ($l=0$) mesh refinements are realized by Starting on the base level ($l=0$) mesh refinements are realized by
...@@ -405,24 +405,24 @@ individually selected by the user. The standard implementation covers ...@@ -405,24 +405,24 @@ individually selected by the user. The standard implementation covers
the following criteria: the following criteria:
- derivatives-based (most important in practice): - derivatives-based (most important in practice):
$\left[\alpha\frac{|\d U|}{|U|+U_\mathrm{ref}}+(1-\alpha) $$\left[\alpha\frac{|\delta U|}{|U|+U_\mathrm{ref}}+(1-\alpha)
\frac{|\d^2U|}{|\d U|+{\rm FILTER}\cdot(|U|+U_\mathrm{ref})}\right] \frac{|\delta^2U|}{|\delta U|+{\rm FILTER}\cdot(|U|+U_\mathrm{ref})}\right]
\left(\frac{\d x^{(l)}}{\d x^{(0)}}\right)^{\xi} \left(\frac{\delta x^{(l)}}{\delta x^{(0)}}\right)^{\xi}
\left\{\begin{array}{ll} \left\{\begin{array}{ll}
>\mathcal{E}_{U} &\exists U \quad\hbox{refinement}\\ >\mathcal{E}_{U} &\exists U \quad\hbox{refinement}\\
<0.8\mathcal{E}_{U} & \forall U \quad\hbox{derefinement}\\ <0.8\mathcal{E}_{U} & \forall U \quad\hbox{derefinement}\\
\end{array}\right.$ \end{array}\right.$$
The criterion is applied to physical variables $U$ The criterion is applied to physical variables $U$
($=\{\varrho,\mathbf{m},e,\mathbf{B},C_\mathrm{c}\}$). Undivided ($=\{\varrho,\mathbf{m},e,\mathbf{B},C_\mathrm{c}\}$). Undivided
first ($\d U$) and second ($\d^2U$) differences are computed along first ($\delta U$) and second ($\delta^2U$) differences are computed along
various spatial directions. The switch $\alpha\in [0,1]$ (code various spatial directions. The switch $\alpha\in [0,1]$ (code
parameter: `_C.amr_d1`) selects between a purely gradient-based parameter: `_C.amr_d1`) selects between a purely gradient-based
criterion ($\alpha =1$) and a purely second-derivatives-based criterion ($\alpha =1$) and a purely second-derivatives-based
criterion ($\alpha =0$). $U_\mathrm{ref}$ are reference values to criterion ($\alpha =0$). $U_\mathrm{ref}$ are reference values to
avoid division by zero for indefinite variables. The exponent avoid division by zero for indefinite variables. The exponent
$\xi\in [0,2]$ (code parameter: `_C.amr_exp`) introduces a power law $\xi\in [0,2]$ (code parameter: `_C.amr_exp`) introduces a power law
functional on the grid spacing ratio $\d x^{(l)}/\d x^{(0)}$ which functional on the grid spacing ratio $\delta x^{(l)}/\delta x^{(0)}$ which
allows to tune the behavior with progressive mesh refinement. The allows to tune the behavior with progressive mesh refinement. The
macro `FILTER` (preset to $10^{-2}$) is a filter to suppress macro `FILTER` (preset to $10^{-2}$) is a filter to suppress
refinement at small-scale solution wiggles. The individual refinement at small-scale solution wiggles. The individual
...@@ -439,11 +439,11 @@ the following criteria: ...@@ -439,11 +439,11 @@ the following criteria:
- Jeans-length-based (important in simulations involving selfgravity): - Jeans-length-based (important in simulations involving selfgravity):
$$\left(\frac{\pi}{G}\frac{c_s^2}{\varrho}\right)^{1/2} $$\left(\frac{\pi}{G}\frac{c_s^2}{\varrho}\right)^{1/2}
\cdot \mathcal{E}_\mathrm{Jeans}\left\{\begin{array}{ll} \cdot \mathcal{E}_\mathrm{Jeans}\left\{\begin{array}{ll}
<\d s & \mbox{refinement}\\ <\delta s & \mbox{refinement}\\
>1.25\d s & \mbox{derefinement}\\ >1.25\delta s & \mbox{derefinement}\\
\end{array}\right.$$ where the first factor is the local Jeans \end{array}\right.$$ where the first factor is the local Jeans
length with $c_s$ the sound speed and $G$ the gravitational length with $c_s$ the sound speed and $G$ the gravitational
constant, and where $\d s=\min\{\d x,h_y\d y, h_z\d z\}$. constant, and where $\delta s=\min\{\delta x,h_y\delta y, h_z\delta z\}$.
$\mathcal{E}_\mathrm{Jeans}$ is a user-specific threshold giving the $\mathcal{E}_\mathrm{Jeans}$ is a user-specific threshold giving the
fraction of the local Jeans length to be resolved by at least 1 grid fraction of the local Jeans length to be resolved by at least 1 grid
cell. cell.
...@@ -453,8 +453,8 @@ the following criteria: ...@@ -453,8 +453,8 @@ the following criteria:
$$2\pi \left(\frac{\kappa T}{\max\left\{T\left(\frac{\partial L}{\partial T}\right)_{\varrho} $$2\pi \left(\frac{\kappa T}{\max\left\{T\left(\frac{\partial L}{\partial T}\right)_{\varrho}
-\varrho \left(\frac{\partial L}{\partial \varrho}\right)_{T},EPS\right\}} -\varrho \left(\frac{\partial L}{\partial \varrho}\right)_{T},EPS\right\}}
\right)^{1/2}\cdot \mathcal{E}_\mathrm{Field}\left\{\begin{array}{ll} \right)^{1/2}\cdot \mathcal{E}_\mathrm{Field}\left\{\begin{array}{ll}
<\d s & \mbox{refinement}\\ <\delta s & \mbox{refinement}\\
>1.25\d s & \mbox{derefinement}\\ >1.25\delta s & \mbox{derefinement}\\
\end{array}\right.$$ where the first factor is the Field length with \end{array}\right.$$ where the first factor is the Field length with
$L(\varrho, T)$ the density- and temperature-dependent heatloss $L(\varrho, T)$ the density- and temperature-dependent heatloss
function and $\kappa$ the thermal conduction coefficient. function and $\kappa$ the thermal conduction coefficient.
... ...
......