Changes
Page history
version 4.2
authored
Nov 03, 2025
by
Udo Ziegler
Show whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.1-Code-basics.md
View page @
c361fb85
...
...
@@ -358,7 +358,7 @@ Elements V of struct `GRD`:
|
`pos[3]`
| grid index of a generic block within parent block (AMR) |
|
`posc[3]`
| grid index of a generic block within its associated superblock |
A cell with index (
,,
) within a grid block
`g`
spans the domain
A cell with index (
`ix`
,
`iy`
,
`iz`
) within a grid block
`g`
spans the domain
\[
`g->x[ix]`
,
`g->x[ix+1]`
\]
$
\t
imes$
\[
`g->y[iy]`
,
`g->y[iy+1]`
\]
$
\t
imes$
\[
`g->z[iz]`
,
`g->z[iz+1]`
\]
where (
`g->x[ix]`
,
`g->y[iy]`
,
`g->z[iz]`
) are the nodal coordinates of
the lower cell corner. Cell-centroid coordinates locate the volume
...
...
@@ -379,7 +379,7 @@ general, is true in Cartesian geometry.
|
*xy*
/
*xz*
-face-centroid x |
`xf[ix]`
|
*z*
<sub>
`ix`
+1/2
</sub>
| 2
*Δ*
<sub>
`ix`
</sub>
*r*
<sup>
3
</sup>
/(3
*Δ*
<sub>
`ix`
</sub>
*r*
<sup>
2
</sup>
) |
|
*yz*
-face-centroid x |
`x[ix]`
|
*z*
<sub>
`ix`
+1/2
</sub>
|
*r*
<sub>
`ix`
+1/2
</sub>
) |
|
*xy*
/
*yz*
-face-centroid y |
`yc[iy]`
| 2
*Δ*
<sub>
`iy`
</sub>
*R*
<sup>
3
</sup>
/(3
*Δ*
<sub>
`iy`
</sub>
*R*
<sup>
2
</sup>
) |
*Δ*
<sub>
`iy`
</sub>
(
*θ*
cos
*θ*
− sin
*θ*
)/
*Δ*
<sub>
`iy`
</sub>
cos
*θ*
|
|
*xz*
-face-centroid y |
`y[iy]`
|
*R*
<sub>
`iy`
+1/2
</sub>
|
*θ*
<sub>
`iy`
+1/2
</sub>
) |
|
*xz*
-face-centroid y |
`y[iy]`
|
*R*
<sub>
`iy`
</sub>
|
*θ*
<sub>
`iy`
</sub>
)
|
|
*xy*
-face-centroid z |
`z[iz]`
|
*ϕ*
<sub>
`iz`
</sub>
|
*ϕ*
<sub>
`iz`
</sub>
|
|
*xz*
/
*yz*
-face-centroid z |
`zc[iz]`
|
*ϕ*
<sub>
`iz`
+1/2
</sub>
|
*ϕ*
<sub>
`iz`
+1/2
</sub>
|
...
...
@@ -387,7 +387,7 @@ general, is true in Cartesian geometry.
The mesh refinement algorithm relies on the oct-tree data structure of
generic blocks (fixed size of 4 cells per direction) represented by the
master mesh pointer
`_G0`
(of type
`*GRD`
). A generic block of
master mesh pointer
`_G0`
(of type
`*
*
GRD`
). A generic block of
refinement level $l$ has cell spacings
$(
\d
elta x^{(l)},
\d
elta y^{(l)},
\d
elta z^{(l)})=
(
\d
elta x^{(0)},
\d
elta y^{(0)},
\d
elta z^{(0)})/2^l$ where
...
...
...
...