| ... | ... | @@ -358,7 +358,7 @@ Elements V of struct `GRD`: |
|
|
|
| `pos[3]` | grid index of a generic block within parent block (AMR) |
|
|
|
|
| `posc[3]` | grid index of a generic block within its associated superblock |
|
|
|
|
|
|
|
|
A cell with index (,,) within a grid block `g` spans the domain
|
|
|
|
A cell with index (`ix`,`iy`,`iz`) within a grid block `g` spans the domain
|
|
|
|
\[`g->x[ix]`,`g->x[ix+1]`\]$\times$\[`g->y[iy]`,`g->y[iy+1]`\]$\times$\[`g->z[iz]`,`g->z[iz+1]`\]
|
|
|
|
where (`g->x[ix]`,`g->y[iy]`,`g->z[iz]`) are the nodal coordinates of
|
|
|
|
the lower cell corner. Cell-centroid coordinates locate the volume
|
| ... | ... | @@ -379,7 +379,7 @@ general, is true in Cartesian geometry. |
|
|
|
| *xy*/*xz*-face-centroid x | `xf[ix]` | *z*<sub>`ix`+1/2</sub> | 2*Δ*<sub>`ix`</sub>*r*<sup>3</sup>/(3*Δ*<sub>`ix`</sub>*r*<sup>2</sup>) |
|
|
|
|
| *yz*-face-centroid x | `x[ix]` | *z*<sub>`ix`+1/2</sub> | *r*<sub>`ix`+1/2</sub>) |
|
|
|
|
| *xy*/*yz*-face-centroid y | `yc[iy]` | 2*Δ*<sub>`iy`</sub>*R*<sup>3</sup>/(3*Δ*<sub>`iy`</sub>*R*<sup>2</sup>) | *Δ*<sub>`iy`</sub>( *θ*cos *θ* − sin *θ*)/*Δ*<sub>`iy`</sub>cos *θ* |
|
|
|
|
| *xz*-face-centroid y | `y[iy]` | *R*<sub>`iy`+1/2</sub> | *θ*<sub>`iy`+1/2</sub>) |
|
|
|
|
| *xz*-face-centroid y | `y[iy]` | *R*<sub>`iy`</sub> | *θ*<sub>`iy`</sub>) |
|
|
|
|
| *xy*-face-centroid z | `z[iz]` | *ϕ*<sub>`iz`</sub> | *ϕ*<sub>`iz`</sub> |
|
|
|
|
| *xz*/*yz*-face-centroid z | `zc[iz]` | *ϕ*<sub>`iz`+1/2</sub> | *ϕ*<sub>`iz`+1/2</sub> |
|
|
|
|
|
| ... | ... | @@ -387,7 +387,7 @@ general, is true in Cartesian geometry. |
|
|
|
|
|
|
|
The mesh refinement algorithm relies on the oct-tree data structure of
|
|
|
|
generic blocks (fixed size of 4 cells per direction) represented by the
|
|
|
|
master mesh pointer `_G0` (of type `*GRD`). A generic block of
|
|
|
|
master mesh pointer `_G0` (of type `**GRD`). A generic block of
|
|
|
|
refinement level $l$ has cell spacings
|
|
|
|
$(\delta x^{(l)}, \delta y^{(l)}, \delta z^{(l)})=
|
|
|
|
(\delta x^{(0)},\delta y^{(0)},\delta z^{(0)})/2^l$ where
|
| ... | ... | |