version 4.2 authored by Udo Ziegler's avatar Udo Ziegler
...@@ -106,7 +106,7 @@ strong magnetic field and/or very low gas density which allows larger ...@@ -106,7 +106,7 @@ strong magnetic field and/or very low gas density which allows larger
integration timesteps. More details: [Physics integration timesteps. More details: [Physics
guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf). guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf).
Use of the Boris correction is controlled in the header file Use of the Boris correction is controlled in the header file
[`nirvanaUser.h`](#user-controllable-macros). [`nirvanaUser.h`](3.2-User-interfaces#user-controllable-macros).
#### Magnetic field splitting #### Magnetic field splitting
...@@ -120,7 +120,7 @@ guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide. ...@@ -120,7 +120,7 @@ guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.
Use of the magnetic field splitting scheme is controlled in the header Use of the magnetic field splitting scheme is controlled in the header
file [`nirvanaUser.h`](#user-controllable-macros) and definition of the file [`nirvanaUser.h`](#user-controllable-macros) and definition of the
background magnetic field in module background magnetic field in module
[`sourceB0User.c`](#user-defined-background-magnetic-field). [`sourceB0User.c`](3.2-User-interfaces#user-defined-background-magnetic-field).
### Dynamic arrays ### Dynamic arrays
...@@ -405,13 +405,13 @@ individually selected by the user. The standard implementation covers ...@@ -405,13 +405,13 @@ individually selected by the user. The standard implementation covers
the following criteria: the following criteria:
- derivatives-based (most important in practice): - derivatives-based (most important in practice):
$$\left[\alpha\frac{|\d U|}{|U|+U_\mathrm{ref}}+(1-\alpha) $\left[\alpha\frac{|\d U|}{|U|+U_\mathrm{ref}}+(1-\alpha)
\frac{|\d^2U|}{|\d U|+{\rm FILTER}\cdot(|U|+U_\mathrm{ref})}\right] \frac{|\d^2U|}{|\d U|+{\rm FILTER}\cdot(|U|+U_\mathrm{ref})}\right]
\left(\frac{\d x^{(l)}}{\d x^{(0)}}\right)^{\xi} \left(\frac{\d x^{(l)}}{\d x^{(0)}}\right)^{\xi}
\left\{\begin{array}{ll} \left\{\begin{array}{ll}
>\mathcal{E}_{U} &\exists U \quad\hbox{refinement}\\ >\mathcal{E}_{U} &\exists U \quad\hbox{refinement}\\
<0.8\mathcal{E}_{U} & \forall U \quad\hbox{derefinement}\\ <0.8\mathcal{E}_{U} & \forall U \quad\hbox{derefinement}\\
\end{array}\right.$$ \end{array}\right.$
The criterion is applied to physical variables $U$ The criterion is applied to physical variables $U$
($=\{\varrho,\mathbf{m},e,\mathbf{B},C_\mathrm{c}\}$). Undivided ($=\{\varrho,\mathbf{m},e,\mathbf{B},C_\mathrm{c}\}$). Undivided
... ...
......