Update 3.2 User interfaces authored by Udo Ziegler's avatar Udo Ziegler
......@@ -1303,15 +1303,15 @@ viscous stress tensor *τ* given by
*τ* = *ν*\[**v**+(∇**v**)<sup></sup>−2/3(∇⋅**v**)*I*\]
where *ν* \[`k``g``m`<sup>1</sup>`s`<sup>1</sup>\] is the
where *ν* \[kg⋅m<sup>1</sup>⋅s<sup>1</sup>\] is the
*dynamic* viscosity coefficient, **v** the fluid velocity and *I* the
identity operator.
*Note: The *dynamic* viscosity coefficient *ν* to be defined here should
not be confused with the kinetic coefficient,*
*ν*<sub>*k**i**n**e**t**i**c*</sub>
\[`m`<sup>2</sup>`s`<sup>1</sup>\], *related to the dynamic
coefficient by* *ν* = 𝜚*ν*<sub>*k**i**n**e**t**i**c*</sub>.
*ν*<sub>*kinetic*</sub>
\[m<sup>2</sup>⋅s<sup>1</sup>\], *related to the dynamic
coefficient by* *ν* = 𝜚*ν*<sub>*kinetic*</sub>.
In the call of `viscosityCoeffUser()` the function arguments are the
superblock pointer `g` and the array pointer `vis` of type `double***`
......@@ -1354,7 +1354,7 @@ coefficient parallel and perpendicular to the magnetic field,
respectively, and **B̂** = **B**/\|**B**\| is the unit vector in the
direction of the magnetic field. *κ*<sub></sub> and *κ*<sub></sub> are
measured in units
`J``K`<sup>1</sup>`m`<sup>1</sup>`s`<sup>1</sup>.
J⋅K<sup>1</sup>⋅m<sup>1</sup>⋅s<sup>1</sup>.
In the call of `conductionCoeffUser()` the function arguments are the
superblock pointer `g` and the array pointers `cond`, `cond_perp` of
......@@ -1382,7 +1382,7 @@ evaluated at cell-centroid coordinates
with forced isotropy (when `COND_FORCE_ISO`=`YES` in `nirvanaUser.h`)
only the `cond`-array has to be assigned with `cond` representing the
conduction coefficient *κ* in the isotropic heat flux
**F**<sub>*C*</sub> = *κ**T*.
**F**<sub>*C*</sub> = *κ**T*.
User-defined thermal conduction is enabled by appropriate choice in the
parameter interface `nirvana.par` under the category
......@@ -1395,7 +1395,7 @@ field contribution given by
**E**<sub>*D*</sub> = − *η*<sub>*D*</sub>∇ × **B**
where *η*<sub>*D*</sub> \[`m`<sup>2</sup>`s`<sup>1</sup>\] is the
where *η*<sub>*D*</sub> \[m<sup>2</sup>⋅s<sup>1</sup>\] is the
diffusion coefficient.
In the call of `diffusionCoeffUser()` function arguments are the
......@@ -1433,11 +1433,11 @@ by
**E**<sub>*AD*</sub> = *η*<sub>*AD*</sub>/*μ*\[(∇×**B****B**\] × **B**
where *η*<sub>*AD*</sub>
\[`V``m``A`<sup>1</sup>`T`<sup>2</sup>\] denotes the
\[V⋅m⋅A<sup>1</sup>⋅T<sup>2</sup>\] denotes the
ambipolar diffusion coefficient.
*Note: The prefactor* *η*<sub>*AD*</sub>/*μ* *has units*
`m`<sup>2</sup>`s`<sup>1</sup>`T`<sup>2</sup>.
m<sup>2</sup>⋅s<sup>1</sup>⋅T<sup>2</sup>.
In the call of `APdiffusionCoeffUser()` function arguments are the
superblock pointer `g` and the array pointer `APdiff` of type
......@@ -1517,7 +1517,7 @@ sum
*L*<sub>*cool*</sub>(*T*, 𝜚) + *L*<sub>*heat*</sub>(*T*, 𝜚)
of both functions, enters as a source term in the energy equation.
*L*<sub>*cool*</sub> and *L*<sub>*heat*</sub> are measured
in units *J**s*<sup>1</sup>*m*<sup>3</sup>.
in units J⋅s<sup>1</sup>⋅m<sup>3</sup>.
In the call of `sourceCoolingUser()` (`sourceHeatingUser()`) the
function arguments are the temperature value `T`, density value `rho`,
......@@ -1529,8 +1529,8 @@ the pointer `deriv` to the derivatives flag and the 2-element vector
f=sourceHeatingUser(T,rho,deriv,dfh);
The user must define the return value
`f` = *L*<sub>*cool*</sub>(`T``,` `rho`)
(*L*<sub>*heat*</sub>(`T``,` `rho`)) in `sourceCoolingUser.c`
`f` = *L*<sub>*cool*</sub>(`T`,`rho`)
(*L*<sub>*heat*</sub>(`T`,`rho`)) in `sourceCoolingUser.c`
(`sourceHeatingUser.c`). The `deriv`-flag is thought to indicate the
calling function whether a user provides the derivatives of
*L*<sub>*cool*</sub>(*T*, 𝜚) and
......
......