Update 3.2 User interfaces authored by Udo Ziegler's avatar Udo Ziegler
...@@ -1303,15 +1303,15 @@ viscous stress tensor *τ* given by ...@@ -1303,15 +1303,15 @@ viscous stress tensor *τ* given by
*τ* = *ν*\[**v**+(∇**v**)<sup></sup>−2/3(∇⋅**v**)*I*\] *τ* = *ν*\[**v**+(∇**v**)<sup></sup>−2/3(∇⋅**v**)*I*\]
where *ν* \[`k``g``m`<sup>1</sup>`s`<sup>1</sup>\] is the where *ν* \[kg⋅m<sup>1</sup>⋅s<sup>1</sup>\] is the
*dynamic* viscosity coefficient, **v** the fluid velocity and *I* the *dynamic* viscosity coefficient, **v** the fluid velocity and *I* the
identity operator. identity operator.
*Note: The *dynamic* viscosity coefficient *ν* to be defined here should *Note: The *dynamic* viscosity coefficient *ν* to be defined here should
not be confused with the kinetic coefficient,* not be confused with the kinetic coefficient,*
*ν*<sub>*k**i**n**e**t**i**c*</sub> *ν*<sub>*kinetic*</sub>
\[`m`<sup>2</sup>`s`<sup>1</sup>\], *related to the dynamic \[m<sup>2</sup>⋅s<sup>1</sup>\], *related to the dynamic
coefficient by* *ν* = 𝜚*ν*<sub>*k**i**n**e**t**i**c*</sub>. coefficient by* *ν* = 𝜚*ν*<sub>*kinetic*</sub>.
In the call of `viscosityCoeffUser()` the function arguments are the In the call of `viscosityCoeffUser()` the function arguments are the
superblock pointer `g` and the array pointer `vis` of type `double***` superblock pointer `g` and the array pointer `vis` of type `double***`
...@@ -1354,7 +1354,7 @@ coefficient parallel and perpendicular to the magnetic field, ...@@ -1354,7 +1354,7 @@ coefficient parallel and perpendicular to the magnetic field,
respectively, and **B̂** = **B**/\|**B**\| is the unit vector in the respectively, and **B̂** = **B**/\|**B**\| is the unit vector in the
direction of the magnetic field. *κ*<sub></sub> and *κ*<sub></sub> are direction of the magnetic field. *κ*<sub></sub> and *κ*<sub></sub> are
measured in units measured in units
`J``K`<sup>1</sup>`m`<sup>1</sup>`s`<sup>1</sup>. J⋅K<sup>1</sup>⋅m<sup>1</sup>⋅s<sup>1</sup>.
In the call of `conductionCoeffUser()` the function arguments are the In the call of `conductionCoeffUser()` the function arguments are the
superblock pointer `g` and the array pointers `cond`, `cond_perp` of superblock pointer `g` and the array pointers `cond`, `cond_perp` of
...@@ -1382,7 +1382,7 @@ evaluated at cell-centroid coordinates ...@@ -1382,7 +1382,7 @@ evaluated at cell-centroid coordinates
with forced isotropy (when `COND_FORCE_ISO`=`YES` in `nirvanaUser.h`) with forced isotropy (when `COND_FORCE_ISO`=`YES` in `nirvanaUser.h`)
only the `cond`-array has to be assigned with `cond` representing the only the `cond`-array has to be assigned with `cond` representing the
conduction coefficient *κ* in the isotropic heat flux conduction coefficient *κ* in the isotropic heat flux
**F**<sub>*C*</sub> = *κ**T*. **F**<sub>*C*</sub> = *κ**T*.
User-defined thermal conduction is enabled by appropriate choice in the User-defined thermal conduction is enabled by appropriate choice in the
parameter interface `nirvana.par` under the category parameter interface `nirvana.par` under the category
...@@ -1395,7 +1395,7 @@ field contribution given by ...@@ -1395,7 +1395,7 @@ field contribution given by
**E**<sub>*D*</sub> = − *η*<sub>*D*</sub>∇ × **B** **E**<sub>*D*</sub> = − *η*<sub>*D*</sub>∇ × **B**
where *η*<sub>*D*</sub> \[`m`<sup>2</sup>`s`<sup>1</sup>\] is the where *η*<sub>*D*</sub> \[m<sup>2</sup>⋅s<sup>1</sup>\] is the
diffusion coefficient. diffusion coefficient.
In the call of `diffusionCoeffUser()` function arguments are the In the call of `diffusionCoeffUser()` function arguments are the
...@@ -1433,11 +1433,11 @@ by ...@@ -1433,11 +1433,11 @@ by
**E**<sub>*AD*</sub> = *η*<sub>*AD*</sub>/*μ*\[(∇×**B****B**\] × **B** **E**<sub>*AD*</sub> = *η*<sub>*AD*</sub>/*μ*\[(∇×**B****B**\] × **B**
where *η*<sub>*AD*</sub> where *η*<sub>*AD*</sub>
\[`V``m``A`<sup>1</sup>`T`<sup>2</sup>\] denotes the \[V⋅m⋅A<sup>1</sup>⋅T<sup>2</sup>\] denotes the
ambipolar diffusion coefficient. ambipolar diffusion coefficient.
*Note: The prefactor* *η*<sub>*AD*</sub>/*μ* *has units* *Note: The prefactor* *η*<sub>*AD*</sub>/*μ* *has units*
`m`<sup>2</sup>`s`<sup>1</sup>`T`<sup>2</sup>. m<sup>2</sup>⋅s<sup>1</sup>⋅T<sup>2</sup>.
In the call of `APdiffusionCoeffUser()` function arguments are the In the call of `APdiffusionCoeffUser()` function arguments are the
superblock pointer `g` and the array pointer `APdiff` of type superblock pointer `g` and the array pointer `APdiff` of type
...@@ -1517,7 +1517,7 @@ sum ...@@ -1517,7 +1517,7 @@ sum
*L*<sub>*cool*</sub>(*T*, 𝜚) + *L*<sub>*heat*</sub>(*T*, 𝜚) *L*<sub>*cool*</sub>(*T*, 𝜚) + *L*<sub>*heat*</sub>(*T*, 𝜚)
of both functions, enters as a source term in the energy equation. of both functions, enters as a source term in the energy equation.
*L*<sub>*cool*</sub> and *L*<sub>*heat*</sub> are measured *L*<sub>*cool*</sub> and *L*<sub>*heat*</sub> are measured
in units *J**s*<sup>1</sup>*m*<sup>3</sup>. in units J⋅s<sup>1</sup>⋅m<sup>3</sup>.
In the call of `sourceCoolingUser()` (`sourceHeatingUser()`) the In the call of `sourceCoolingUser()` (`sourceHeatingUser()`) the
function arguments are the temperature value `T`, density value `rho`, function arguments are the temperature value `T`, density value `rho`,
...@@ -1529,8 +1529,8 @@ the pointer `deriv` to the derivatives flag and the 2-element vector ...@@ -1529,8 +1529,8 @@ the pointer `deriv` to the derivatives flag and the 2-element vector
f=sourceHeatingUser(T,rho,deriv,dfh); f=sourceHeatingUser(T,rho,deriv,dfh);
The user must define the return value The user must define the return value
`f` = *L*<sub>*cool*</sub>(`T``,` `rho`) `f` = *L*<sub>*cool*</sub>(`T`,`rho`)
(*L*<sub>*heat*</sub>(`T``,` `rho`)) in `sourceCoolingUser.c` (*L*<sub>*heat*</sub>(`T`,`rho`)) in `sourceCoolingUser.c`
(`sourceHeatingUser.c`). The `deriv`-flag is thought to indicate the (`sourceHeatingUser.c`). The `deriv`-flag is thought to indicate the
calling function whether a user provides the derivatives of calling function whether a user provides the derivatives of
*L*<sub>*cool*</sub>(*T*, 𝜚) and *L*<sub>*cool*</sub>(*T*, 𝜚) and
... ...
......