| ... | ... | @@ -1621,7 +1621,7 @@ log *T*, both as functions of the logarithm of mass density log 𝜚 |
|
|
|
and the logarithm of thermal energy density *ε*.
|
|
|
|
The look-up tables for a prescribed (log 𝜚, log *ε*)-range
|
|
|
|
are generated by cubic interpolation from user-specified data
|
|
|
|
{(log *p*)<sub>*ij*</sub>} and ({(log *T*)<sub>*ij*</sub>})
|
|
|
|
{(log *p*)<sub>*ij*</sub>} and {(log *T*)<sub>*ij*</sub>}
|
|
|
|
on an rectilinear mesh {(log 𝜚)<sub>*i*</sub>} × {(log *ε*)<sub>*j*</sub>},
|
|
|
|
*i*=0,n1-1 and *j*=0,n2-1, with n1 × n2 the number of mesh points.
|
|
|
|
|
| ... | ... | @@ -1844,15 +1844,17 @@ An example can be found in the testproblem |
|
|
|
### User-defined background magnetic field
|
|
|
|
|
|
|
|
The module `sourceB0User.c` containing the function `sourceB0User()`
|
|
|
|
serves as template for defining a background magnetic field,
|
|
|
|
$\mathbf{B}_0$, in the context of the magnetic field splitting formalism
|
|
|
|
(cf. [physics
|
|
|
|
guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf)).
|
|
|
|
$\mathbf{B}_0$ must be a time-independent, divergence-free potential
|
|
|
|
field, i.e.,
|
|
|
|
$$\partial_t\mathbf{B}_0=0$$,
|
|
|
|
$$\nabla\!\cdot\!{\mathbf{B}_0}=0$$ and
|
|
|
|
$$\nabla\!\times\!{\mathbf{B}_0}=0$$.
|
|
|
|
serves as template for defining a background magnetic field **B**<sub>0</sub>
|
|
|
|
in the context of the magnetic field splitting formalism
|
|
|
|
(cf. [physics guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf)).
|
|
|
|
**B**<sub>0</sub> must be a time-independent, divergence-free potential field, i.e.,
|
|
|
|
|
|
|
|
d**B**<sub>0</sub>/dt=0,
|
|
|
|
|
|
|
|
∇⋅**B**<sub>0</sub>=0
|
|
|
|
|
|
|
|
∇×**B**<sub>0</sub>=0.
|
|
|
|
|
|
|
|
In the call of `sourceB0User()`
|
|
|
|
the function arguments are the pointer to the array `B0` of magnetic
|
|
|
|
field The function
|
| ... | ... | @@ -1861,8 +1863,8 @@ field The function |
|
|
|
|
|
|
|
takes arguments `B0`, a pointer to a 3-element vector for the components
|
|
|
|
of the magnetic field, and the spatial coordinates `x,y,z` of a point.
|
|
|
|
The user must define the components `B0[0]`=$B0_x$, `B0[1]`=$B0_y$ and
|
|
|
|
`B0[2]`=$B0_z$, respectively,
|
|
|
|
The user must define the components `B0[0]`=*B*<sub>0x</sub>,
|
|
|
|
`B0[1]`=*B*<sub>0y</sub> and `B0[2]`=*B*<sub>0z</sub>, respectively.
|
|
|
|
|
|
|
|
An example definition for a background field (a magnetic dipole field)
|
|
|
|
can be found in testproblem `/nirvana/testproblems/MHD/problem30`.
|
| ... | ... | |