Changes
Page history
version 4.2
authored
Oct 30, 2025
by
Udo Ziegler
Hide whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.2-User-interfaces.md
View page @
2e73f184
...
...
@@ -1621,7 +1621,7 @@ log *T*, both as functions of the logarithm of mass density log 𝜚
and the logarithm of thermal energy density
*ε*
.
The look-up tables for a prescribed (log 𝜚, log
*ε*
)-range
are generated by cubic interpolation from user-specified data
{(log
*p*
)
<sub>
*ij*
</sub>
} and
(
{(log
*T*
)
<sub>
*ij*
</sub>
}
)
{(log
*p*
)
<sub>
*ij*
</sub>
} and {(log
*T*
)
<sub>
*ij*
</sub>
}
on an rectilinear mesh {(log 𝜚)
<sub>
*i*
</sub>
} × {(log
*ε*
)
<sub>
*j*
</sub>
},
*i*
=0,n1-1 and
*j*
=0,n2-1, with n1 × n2 the number of mesh points.
...
...
@@ -1844,15 +1844,17 @@ An example can be found in the testproblem
### User-defined background magnetic field
The module `
sourceB0User.c
` containing the function `
sourceB0User()
`
serves as template for defining a background magnetic field,
$\mathbf{B}_0$, in the context of the magnetic field splitting formalism
(cf. [physics
guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf)).
$\mathbf{B}_0$ must be a time-independent, divergence-free potential
field, i.e.,
$$\partial_t\mathbf{B}_0=0$$,
$$\nabla\!\cdot\!{\mathbf{B}_0}=0$$ and
$$\nabla\!\times\!{\mathbf{B}_0}=0$$.
serves as template for defining a background magnetic field **B**<sub>0</sub>
in the context of the magnetic field splitting formalism
(cf. [physics guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf)).
**B**<sub>0</sub> must be a time-independent, divergence-free potential field, i.e.,
d**B**<sub>0</sub>/dt=0,
∇⋅**B**<sub>0</sub>=0
∇×**B**<sub>0</sub>=0.
In the call of `
sourceB0User()
`
the function arguments are the pointer to the array `
B0
` of magnetic
field The function
...
...
@@ -1861,8 +1863,8 @@ field The function
takes arguments `
B0
`, a pointer to a 3-element vector for the components
of the magnetic field, and the spatial coordinates `
x,y,z
` of a point.
The user must define the components `
B0[0]
`=
$B0_x$, `
B0[1]
`=$B0_y$ and
`
B0[
2]
`=$B0_z$
, respectively
,
The user must define the components `
B0[0]
`=
*B*<sub>0x</sub>,
`
B0[
1]
`=*B*<sub>0y</sub> and `
B0[2]
`=*B*<sub>0z</sub>
, respectively
.
An example definition for a background field (a magnetic dipole field)
can be found in testproblem `
/nirvana/testproblems/MHD/problem30
`.
...
...
...
...