Changes
Page history
version 4.2
authored
Oct 29, 2025
by
Udo Ziegler
Show whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.2-User-interfaces.md
View page @
32df2010
...
@@ -974,26 +974,18 @@ integral form of $\mathbf{B}=\nabla\times \mathbf{A}$:
...
@@ -974,26 +974,18 @@ integral form of $\mathbf{B}=\nabla\times \mathbf{A}$:
where the difference operators
*Δ*
<sub>
ix
</sub>
,
*Δ*
<sub>
iy
</sub>
where the difference operators
*Δ*
<sub>
ix
</sub>
,
*Δ*
<sub>
iy
</sub>
and
*Δ*
<sub>
iz
</sub>
are given by
and
*Δ*
<sub>
iz
</sub>
are given by
*Δ*
<sub>
ix
</sub>
X=X(i
z
,iy,i
x
+1)-X(i
z
,iy,i
x
)
*Δ*
<sub>
ix
</sub>
X=X(i
x
,iy,i
z
+1)-X(i
x
,iy,i
z
)
*Δ*
<sub>
iy
</sub>
X=X(i
z
,iy+1,i
x
)-X(i
z
,iy,i
x
)
*Δ*
<sub>
iy
</sub>
X=X(i
x
,iy+1,i
z
)-X(i
x
,iy,i
z
)
*Δ*
<sub>
iz
</sub>
X=X(i
z
,iy,i
x
+1)-X(i
z
,iy,i
x
)
*Δ*
<sub>
iz
</sub>
X=X(i
x
,iy,i
z
+1)-X(i
x
,iy,i
z
)
and (
*Â*
<sub>
*x*
</sub>
,
*Â*
<sub>
*y*
</sub>
,
*Â*
<sub>
*z*
</sub>
)
and (
*Â*
<sub>
*x*
</sub>
,
*Â*
<sub>
*y*
</sub>
,
*Â*
<sub>
*z*
</sub>
)
are the cell-edge integrals
are the cell-edge integrals


$$
\h
at{A}_x(
\m
athtt{iz,iy,ix})=
\i
nt
\l
imits_
\m
athtt{g->x[ix]}^
\m
athtt{g->x[ix+1]}
The
*Â*
's
A_x(x,
\m
athtt{g->y[iy]},
\m
athtt{g->z[iz]})dx$$
$$
\h
at{A}_y(
\m
athtt{iz,iy,ix})=
\i
nt
\l
imits_
\m
athtt{g->y[iy]}^
\m
athtt{g->y[iy+1]}
A_y(
\m
athtt{g->x[ix]},y,
\m
athtt{g->z[iz]})dy$$
$$
\h
at{A}_z(
\m
athtt{iz,iy,ix})=
\i
nt
\l
imits_
\m
athtt{g->z[iz]}^
\m
athtt{g->z[iz+1]}
A_z(
\m
athtt{g->x[ix]},
\m
athtt{g->y[iy]},z)dz$$
The $
\h
at{A}$'s are usually easier to compute than the face-averaged
The $
\h
at{A}$'s are usually easier to compute than the face-averaged
magnetic field components directly. Even if the $
\h
at{A}$'s are
magnetic field components directly. Even if the $
\h
at{A}$'s are
approximated but otherwise set
*unambiguously*
on cell edges in the grid
approximated but otherwise set
*unambiguously*
on cell edges in the grid
...
...
...
...