| ... | ... | @@ -156,8 +156,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
        physical evolution time `_C.time_max` is reached the simulation
 | 
| 
 | 
 | 
        stops ahead of schedule.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `03` (`_C.freq_log`, `_C.freq_nir`, `_C.freq_ana`,
 | 
| 
 | 
 | 
    `_C.freq_walltime`)
 | 
| 
 | 
 | 
-   `03` (`_C.freq_log`, `_C.freq_nir`, `_C.freq_ana`, `_C.freq_walltime`)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.freq_log`: interval in units of timesteps at which the
 | 
| 
 | 
 | 
        NIRVANA log file `nirvana.log` and monitoring file `nirvana.mon`
 | 
| ... | ... | @@ -181,8 +180,10 @@ possible values or a numeric range. | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `01` (`_C.geometry`, `_C.omega[0-2]`)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.geometry` ({CART,CYL,SPH}): choice of coordinate system
 | 
| 
 | 
 | 
        where CART=Cartesian, CYL=cylindrical and SPH=spherical.
 | 
| 
 | 
 | 
    -   `_C.geometry` ({CART,CYL,SPH}): choice of coordinate system where
 | 
| 
 | 
 | 
        - CART: Cartesian
 | 
| 
 | 
 | 
        - CYL: cylindrical
 | 
| 
 | 
 | 
        - SPH: spherical
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.omega[0-2]`: components of the angular velocity vector of a
 | 
| 
 | 
 | 
        rotating frame of reference with respect to the inertial frame
 | 
| ... | ... | @@ -202,32 +203,32 @@ possible values or a numeric range. | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `01` (`_C.lo[0]`, `_C.up[0]`, `_C.dim[0]`)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.lo[0]`,\_C.up\[0\]: lower,upper $x$-coordinate of the
 | 
| 
 | 
 | 
    -   `_C.lo[0]`,\_C.up\[0\]: lower,upper **x**-coordinate of the
 | 
| 
 | 
 | 
        computational domain.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.dim[0]`: number of *base-level* grid points in
 | 
| 
 | 
 | 
        $x$-direction. `_C.dim[0]` must be an integral factor of 4, and
 | 
| 
 | 
 | 
        **x**-direction. `_C.dim[0]` must be an integral factor of 4, and
 | 
| 
 | 
 | 
        excludes ghost cells which are automatically added by the code.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `02` (`_C.lo[1]`, `_C.up[1]`, `_C.dim[1]`)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.lo[1]`,`_C.up[1]`: lower,upper $y$-coordinate of the
 | 
| 
 | 
 | 
    -   `_C.lo[1]`,`_C.up[1]`: lower,upper **y**-coordinate of the
 | 
| 
 | 
 | 
        computational domain. In case of spherical geometry
 | 
| 
 | 
 | 
        ($y\equiv \theta$) `_C.lo[1]`,`_C.up[1]` have to be specified in
 | 
| 
 | 
 | 
        units of $\pi$.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.dim[1]`: number of *base-level* grid points in
 | 
| 
 | 
 | 
        $y$-direction. `_C.dim[1]` must be a multiple factor of 4.
 | 
| 
 | 
 | 
        **y**-direction. `_C.dim[1]` must be a multiple factor of 4.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `03` (`_C.lo[2]`, `_C.up[2]`, `_C.dim[2]`)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.lo[2]`,`_C.up[2]`: lower,upper $z$-coordinate of the
 | 
| 
 | 
 | 
    -   `_C.lo[2]`,`_C.up[2]`: lower,upper **z**-coordinate of the
 | 
| 
 | 
 | 
        computational domain. In case of cylindrical- or spherical
 | 
| 
 | 
 | 
        geometry ($z\equiv \phi$) `_C.lo[2]`,`_C.up[2]` have to be
 | 
| 
 | 
 | 
        specified in units of $\pi$.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.dim[2]`: number of *base-level* grid points in
 | 
| 
 | 
 | 
        $z$-direction. `_C.dim[2]` must be a multiple factor of 4. If
 | 
| 
 | 
 | 
        **z**-direction. `_C.dim[2]` must be a multiple factor of 4. If
 | 
| 
 | 
 | 
        `_C.dim[2]`=0 the simulation is assumed 2D, i.e., axisymmetric
 | 
| 
 | 
 | 
        in case of cylindrical- or spherical coordinates.
 | 
| 
 | 
 | 
 | 
| ... | ... | @@ -241,7 +242,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
        SFC-decomposition is automatically used instead.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.bnx`,`_C.bny`,`_C.bnz`: number of domain subdivisions in
 | 
| 
 | 
 | 
        $x,y,z$-direction in case \_C.partitioning_type=BLOCK. Numbers
 | 
| 
 | 
 | 
        **x,y,z**-direction in case \_C.partitioning_type=BLOCK. Numbers
 | 
| 
 | 
 | 
        must be chosen such that the grid dimension of subdomains is a
 | 
| 
 | 
 | 
        multiple factor of 4 in each coordinate direction. Moreover, the
 | 
| 
 | 
 | 
        total number of subdomains must equal the number of MPI threads,
 | 
| ... | ... | @@ -341,14 +342,14 @@ possible values or a numeric range. | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `01` (`_C.imr`, `_C.amr`)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.imr` ($\le$`MAXLEVEL`): maximum refinement level for an
 | 
| 
 | 
 | 
    -   `_C.imr` (<=`MAXLEVEL`): maximum refinement level for an
 | 
| 
 | 
 | 
        initially refined mesh by the user (cf. [User-defined initial
 | 
| 
 | 
 | 
        mesh refinement and refinement
 | 
| 
 | 
 | 
        control](#user-defined-initial-mesh-refinement-and-refinement-control)).
 | 
| 
 | 
 | 
        `_C.imr` cannot be larger than the macro `MAXLEVEL` defined in
 | 
| 
 | 
 | 
        the header file `nirvanaUser.h`.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.amr` ($\le$`MAXLEVEL`): allowed maximum mesh refinement
 | 
| 
 | 
 | 
    -   `_C.amr` (<=`MAXLEVEL`): allowed maximum mesh refinement
 | 
| 
 | 
 | 
        level in a AMR simulations. `_C.amr` cannot be larger than the
 | 
| 
 | 
 | 
        macro `MAXLEVEL` defined in the header file `nirvanaUser.h`.
 | 
| 
 | 
 | 
 | 
| ... | ... | @@ -411,14 +412,13 @@ possible values or a numeric range. | 
| 
 | 
 | 
        grid cell. A zero or negative value means that the
 | 
| 
 | 
 | 
        Jeans-length-based criterion is disabled.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.amr_dJeans` ($\ge 0$): tuning parameter for the
 | 
| 
 | 
 | 
    -   `_C.amr_dJeans` (>=0): tuning parameter for the
 | 
| 
 | 
 | 
        Jeans-length-based mesh refinement criterion allowing a
 | 
| 
 | 
 | 
        systematic reduction of the Jeans threshold with increasing
 | 
| 
 | 
 | 
        refinement level $l$ according to the expression
 | 
| 
 | 
 | 
        `_C.amr_Jeans` $-l*$ `_C.amr_dJeans`
 | 
| 
 | 
 | 
        i.e., the local
 | 
| 
 | 
 | 
        refinement level l according to the expression
 | 
| 
 | 
 | 
        `_C.amr_Jeans`-l*`_C.amr_dJeans` i.e., the local
 | 
| 
 | 
 | 
        Jeans length becomes gradually higher resolved with increasing
 | 
| 
 | 
 | 
        $l$. `_C.amr_dJeans` must be positiv. 
 | 
| 
 | 
 | 
        l. `_C.amr_dJeans` must be positiv.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
        **Important**: `_C.amr_dJeans` must be chosen with care such
 | 
| 
 | 
 | 
        that the actual Jeans threshold never becomes too small or
 | 
| ... | ... | @@ -497,7 +497,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
            numerical technique (equiv. to genuinely 2D-HLL in the
 | 
| 
 | 
 | 
            current implementation).
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.mhd_courant` (typical value: $<0.5$): CFL number in the
 | 
| 
 | 
 | 
    -   `_C.mhd_courant` (typical value: <0.5): CFL number in the
 | 
| 
 | 
 | 
        MHD timestep.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `02` (`_C.viscosity_solver`, `_C.viscosity_courant`)
 | 
| ... | ... | @@ -512,7 +512,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
            Coupling to MHD integrator is via Strang-type splitting.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.viscosity_courant`: CFL-like number in the fluid viscosity
 | 
| 
 | 
 | 
        timestep. A typical value in case of STD is $<0.4$. Values much
 | 
| 
 | 
 | 
        timestep. A typical value in case of STD is <0.4. Values much
 | 
| 
 | 
 | 
        larger than 1 are possible in the case of RKL.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `03` (`_C.diffusion_solver`, `_C.diffusion_courant`)
 | 
| ... | ... | @@ -529,13 +529,13 @@ possible values or a numeric range. | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `06` (`_C.heatloss_max_change`)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.heatloss_max_change` (typical value: $<0.1$): allowed
 | 
| 
 | 
 | 
    -   `_C.heatloss_max_change` (typical value: <0.1): allowed
 | 
| 
 | 
 | 
        maximal relative change in the temperature due to the heatloss
 | 
| 
 | 
 | 
        source term.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
-   `07` (`_C.reactions_max_changeX`, `_C.reactions_max_changeT`)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.reactions_max_changeX` (typical value: $<0.1$): allowed
 | 
| 
 | 
 | 
    -   `_C.reactions_max_changeX` (typical value: <0.1): allowed
 | 
| 
 | 
 | 
        maximal relative change of species number densities (or total
 | 
| 
 | 
 | 
        number density) in the time integration of the chemo-thermal
 | 
| 
 | 
 | 
        rate equations.
 | 
| ... | ... | @@ -546,7 +546,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
        number density (`SXN`=1 uses individual number densities;
 | 
| 
 | 
 | 
        `SXN`=0 uses the total number density).
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.reactions_max_changeT` (typical value: $<0.1$): allowed
 | 
| 
 | 
 | 
    -   `_C.reactions_max_changeT` (typical value: <0.1): allowed
 | 
| 
 | 
 | 
        maximal relative change in the temperature in the time
 | 
| 
 | 
 | 
        integration of the chemo-thermal rate equations.
 | 
| 
 | 
 | 
 | 
| ... | ... | @@ -635,7 +635,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
        perpendicular to the magnetic field (meaningless in isotropic
 | 
| 
 | 
 | 
        conduction).
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.conduction_coeff_sat` (typical value: $0.3$): $\Psi$ is the
 | 
| 
 | 
 | 
    -   `_C.conduction_coeff_sat` (typical value: 0.3): $\Psi$ is the
 | 
| 
 | 
 | 
        parameter in the saturation heat flux model of \[[CM77](#references)\] (cf.
 | 
| 
 | 
 | 
        [physics
 | 
| 
 | 
 | 
        guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf)).
 | 
| ... | ... | @@ -675,7 +675,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
        **Important:** Disabling the energy equation is not compatible
 | 
| 
 | 
 | 
        with the use of an adiabatic EOS, for instance.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.energy_dual_sw` ($[0,1]$; typical value: $0.01$): threshold
 | 
| 
 | 
 | 
    -   `_C.energy_dual_sw` (\[0,1\]; typical value: <=0.01): threshold
 | 
| 
 | 
 | 
        value for the thermal-to-total energy density ratio in the dual
 | 
| 
 | 
 | 
        energy formalism (when `_C.energy`=DUAL).
 | 
| 
 | 
 | 
 | 
| ... | ... |  |