| ... | ... | @@ -971,25 +971,15 @@ integral form of $\mathbf{B}=\nabla\times \mathbf{A}$: | 
| 
 | 
 | 
 | 
| 
 | 
 | 
`g->bz[iz][iy][ix]` = \[*Δ*<sub>ix</sub>(*h*<sub>*y*</sub>*Â*<sub>*y*</sub>)−*Δ*<sub>iy</sub>*Â*<sub>*x*</sub>\]/*δ*𝒜<sub>*z*</sub>
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
`g->bx[iz][iy][ix]`$=\left[h_y\Delta_{iy} (h_{zy}\hat{A}_z)
 | 
| 
 | 
 | 
-h_y\Delta_{iz} \hat{A}_y\right]/\delta \mathcal{A}_x$
 | 
| 
 | 
 | 
where the difference operators *Δ*<sub>ix</sub>, *Δ*<sub>iy</sub> 
 | 
| 
 | 
 | 
and *Δ*<sub>iz</sub> are given by
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
`g->by[iz][iy][ix]`$=\left[\Delta_{iz} \hat{A}_x
 | 
| 
 | 
 | 
-h_{zy}\Delta_{ix} (h_y\hat{A}_z)\right]/\delta \mathcal{A}_y$
 | 
| 
 | 
 | 
*Δ*<sub>ix</sub>X=X(iz,iy,ix+1)-X(iz,iy,ix)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
`g->bz[iz][iy][ix]`$=\left[\Delta_{ix} (h_y\hat{A}_y)
 | 
| 
 | 
 | 
-\Delta_{iy} \hat{A}_x\right]/\delta \mathcal{A}_z$
 | 
| 
 | 
 | 
*Δ*<sub>iy</sub>X=X(iz,iy+1,ix)-X(iz,iy,ix)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
where the difference operators $\Delta_{ix}$, $\Delta_{iy}$ and
 | 
| 
 | 
 | 
$\Delta_{iz}$ are given by
 | 
| 
 | 
 | 
*Δ*<sub>iz</sub>X=X(iz,iy,ix+1)-X(iz,iy,ix)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
$\Delta_{ix}X=X(\mathtt{iz,iy,ix+1})-X(\mathtt{iz,iy,ix})$,
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
$\Delta_{iy}X=X(\mathtt{iz,iy+1,ix})-X(\mathtt{iz,iy,ix})$,
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
$\Delta_{iz}X=X(\mathtt{iz,iy,ix+1})-X(\mathtt{iz,iy,ix})$
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
and $(\hat{A}_x,\hat{A}_y,\hat{A}_z)$ are the cell-edge integrals
 | 
| 
 | 
 | 
and (*Â*<sub>*x*</sub>, *Â*<sub>*y*</sub>, *Â*<sub>*z*</sub>) 
 | 
| 
 | 
 | 
are the cell-edge integrals
 | 
| 
 | 
 | 
 | 
| ... | ... |  |