| ... | ... | @@ -1412,13 +1412,13 @@ by the appropriate choice of parameter `_C.conduction` in file |
|
|
|
Ohmic diffusion enters the induction equation and energy equation as a
|
|
|
|
field contribution given by
|
|
|
|
|
|
|
|
$$\mathbf{E}_\mathrm{D}=\eta_\mathrm{D} \nabla\times\mathbf{B}$$
|
|
|
|
**E**<sub>*D*</sub> = *η*<sub>*D*</sub>∇×**B**
|
|
|
|
|
|
|
|
where $\eta_\mathrm{D}$ in units \[m$^2\cdot$s$^{-1}$\] is the diffusion
|
|
|
|
coefficient.
|
|
|
|
where *η*<sub>*D*</sub> in units \[m<sup>2</sup>⋅s<sup>−1</sup>\] is the
|
|
|
|
diffusion coefficient.
|
|
|
|
|
|
|
|
A user-defined coefficients, $\eta_\mathrm{D}$, has to be assigned in
|
|
|
|
module `diffusionCoeffUser.c` in the function
|
|
|
|
A user-defined coefficients, *η*<sub>*D*</sub>,
|
|
|
|
has to be assigned in module `diffusionCoeffUser.c` in the function
|
|
|
|
|
|
|
|
diffusionCoeffUser(g,diff);
|
|
|
|
|
| ... | ... | @@ -1451,15 +1451,16 @@ user-defined ambipolar diffusion coefficient. |
|
|
|
Ambipolar diffusion enters the induction equation and energy equation as
|
|
|
|
a field contribution given by
|
|
|
|
|
|
|
|
$$\mathbf{E}_\mathrm{AD}=\eta_\mathrm{AD}/\mu\mathbf{B}\times\left[(\nabla\times\mathbf{B})
|
|
|
|
\times\mathbf{B}\right]$$
|
|
|
|
**E**<sub>*AD*</sub> = *η*<sub>*AD*</sub>/*μ* **B**×[(∇×**B**)×**B**\]
|
|
|
|
|
|
|
|
where *η*<sub>*AD*</sub> in units \[V⋅m⋅A<sup>−1</sup>⋅T<sup>−2</sup>\]
|
|
|
|
denotes the ambipolar diffusion coefficient.
|
|
|
|
|
|
|
|
where $\eta_\mathrm{AD}$ \[V$\cdot$m$\cdot$A$^{-1}\cdot$T$^{-2}$\]
|
|
|
|
denotes the ambipolar diffusion coefficient. The prefactor
|
|
|
|
$\eta_\mathrm{AD}/\mu$ has units m$^2\cdot$s$^{-1}\cdot$T$^{-2}$.
|
|
|
|
The prefactor* *η*<sub>*AD*</sub>/*μ* has units
|
|
|
|
m<sup>2</sup>⋅s<sup>−1</sup>⋅T<sup>−2</sup>.
|
|
|
|
|
|
|
|
A user-defined coefficients, $\eta_\mathrm{AD}$, has to be assigned in
|
|
|
|
module `APdiffusionCoeffUser.c` in the function
|
|
|
|
A user-defined coefficients, *η*<sub>*AD*</sub>,
|
|
|
|
has to be assigned in module `APdiffusionCoeffUser.c` in the function
|
|
|
|
|
|
|
|
APdiffusionCoeffUser(g,APdiff);
|
|
|
|
|
| ... | ... | |