Changes
Page history
version 4.2
authored
Oct 30, 2025
by
Udo Ziegler
Hide whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.2-User-interfaces.md
View page @
8f945794
...
...
@@ -1318,7 +1318,6 @@ respectively.
#### Fluid viscosity
Fluid viscosity enters the momentum equation and energy equation via the
viscous stress tensor $
\t
au$ given by
viscous stress tensor
*τ*
given by
*τ*
=
*ν*
\[
∇
**v**
+(∇
**v**
)
<sup>
⊤
</sup>
−2/3(∇⋅
**v**
)
*I*
\]
...
...
@@ -1362,23 +1361,21 @@ testproblem `/nirvana/testproblems/VISC/problem1`.
#### Thermal conduction
Thermal conduction enters the energy equation through a heat flux
$
\m
athbf{F}_{
\m
athrm{C}}$
. Generally, the presence of a magnetic field
**F**
<sub>
*C*
</sub>
. Generally, the presence of a magnetic field
introduces anisotropic effects with different transport properties along
and across the magnetic field.
$
\m
athbf{F}_
\m
athrm{C}$
is described by
and across the magnetic field.
**F**
<sub>
*C*
</sub>
is described by
$$
\m
athbf{F}_
\m
athrm{C}=-
\k
appa_
\p
arallel (
\n
abla T
\c
dot
\m
athbf{
\h
at{B}})
\m
athbf{
\h
at{B}}
-
\k
appa_
\p
erp
\l
eft(
\n
abla T-(
\n
abla T
\c
dot
\m
athbf{
\h
at{B}})
\m
athbf{
\h
at{B}}
\r
ight)$$
**F**
<sub>
*C*
</sub>
= −
*κ*
<sub>
∥
</sub>
(∇
*T*
⋅
**B̂**
)
**B̂**
−
*κ*
<sub>
⊥
</sub>
(∇
*T*
−(∇
*T*
⋅
**B̂**
)
**B̂**
)
where
$
\k
appa_
\p
arallel$ and $
\k
appa_
\p
erp$
is the thermal conduction
where
*κ*
<sub>
∥
</sub>
and
*κ*
<sub>
⊥
</sub>
is the thermal conduction
coefficient parallel and perpendicular to the magnetic field,
respectively, and $
\m
athbf{
\h
at{B}}=
\m
athbf{B}/|
\m
athbf{B}|$ is the unit
vector in the direction of the magnetic field. $
\k
appa_
\p
arallel$ and
$
\k
appa_
\p
erp$ are measured in units
J$
\c
dot$K$^{-1}
\c
dot$m$^{-1}
\c
dot$s$^{-1}$ (cf.
[
physics
guide
](
https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf
)
).
respectively, and
**B̂**
=
**B**
/
\|
**B**
\|
is the unit vector in the
direction of the magnetic field.
*κ*
<sub>
∥
</sub>
and
*κ*
<sub>
⊥
</sub>
are
measured in units J⋅K
<sup>
−1
</sup>
⋅m
<sup>
−1
</sup>
⋅s
<sup>
−1
</sup>
(cf.
[
physics guide
](
https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf
)
).
User-defined coefficients,
$
\k
appa_
\p
arallel$ and $
\k
appa_
\p
erp$, have
to be assigned in module
`conductionCoeffUser.c`
in the function
User-defined coefficients,
*κ*
<sub>
∥
</sub>
and
*κ*
<sub>
⊥
</sub>
,
have
to be assigned in module
`conductionCoeffUser.c`
in the function
conductionCoeffUser(g,cond,cond_perp);
...
...
@@ -1403,8 +1400,8 @@ i.e., it should be defined at location
(
`g->xc[ix]`
,
`g->yc[iy]`
,
`g->zc[iz]`
). In HD simulations and in MHD
simulations with forced isotropy (when
`COND_FORCE_ISO`
=
`YES`
in
`nirvanaUser.h`
) only the
`cond`
-array has to be assigned with
`cond`
representing now the conduction coefficient
$
\k
appa$
in the isotropic
heat flux
$
\m
athbf{F}_
\m
athrm{C}=-
\k
appa
\n
abla T$
.
representing now the conduction coefficient
*κ*
in the isotropic
heat flux
**F**
<sub>
*C*
</sub>
= −
*κ*
∇
*T*
.
Thermal conduction with user-defined conduction coefficients is enabled
by the appropriate choice of parameter
`_C.conduction`
in file
...
...
...
...