version 4.2 authored by Udo Ziegler's avatar Udo Ziegler
...@@ -1318,7 +1318,6 @@ respectively. ...@@ -1318,7 +1318,6 @@ respectively.
#### Fluid viscosity #### Fluid viscosity
Fluid viscosity enters the momentum equation and energy equation via the Fluid viscosity enters the momentum equation and energy equation via the
viscous stress tensor $\tau$ given by
viscous stress tensor *τ* given by viscous stress tensor *τ* given by
*τ* = *ν*\[**v**+(∇**v**)<sup></sup>−2/3(∇⋅**v**)*I*\] *τ* = *ν*\[**v**+(∇**v**)<sup></sup>−2/3(∇⋅**v**)*I*\]
...@@ -1362,23 +1361,21 @@ testproblem `/nirvana/testproblems/VISC/problem1`. ...@@ -1362,23 +1361,21 @@ testproblem `/nirvana/testproblems/VISC/problem1`.
#### Thermal conduction #### Thermal conduction
Thermal conduction enters the energy equation through a heat flux Thermal conduction enters the energy equation through a heat flux
$\mathbf{F}_{\mathrm{C}}$. Generally, the presence of a magnetic field **F**<sub>*C*</sub>. Generally, the presence of a magnetic field
introduces anisotropic effects with different transport properties along introduces anisotropic effects with different transport properties along
and across the magnetic field. $\mathbf{F}_\mathrm{C}$ is described by and across the magnetic field. **F**<sub>*C*</sub> is described by
$$\mathbf{F}_\mathrm{C}=-\kappa_\parallel (\nabla T\cdot\mathbf{\hat{B}})\mathbf{\hat{B}} **F**<sub>*C*</sub> = −*κ*<sub></sub>(∇*T***B̂**)**B̂***κ*<sub></sub>(∇*T*−(∇*T***B̂**)**B̂**)
-\kappa_\perp \left(\nabla T-(\nabla T\cdot\mathbf{\hat{B}})\mathbf{\hat{B}}\right)$$
where $\kappa_\parallel$ and $\kappa_\perp$ is the thermal conduction where *κ*<sub></sub> and *κ*<sub></sub> is the thermal conduction
coefficient parallel and perpendicular to the magnetic field, coefficient parallel and perpendicular to the magnetic field,
respectively, and $\mathbf{\hat{B}}=\mathbf{B}/|\mathbf{B}|$ is the unit respectively, and **B̂** = **B**/\|**B**\| is the unit vector in the
vector in the direction of the magnetic field. $\kappa_\parallel$ and direction of the magnetic field. *κ*<sub></sub> and *κ*<sub></sub> are
$\kappa_\perp$ are measured in units measured in units J⋅K<sup>−1</sup>⋅m<sup>−1</sup>⋅s<sup>−1</sup>
J$\cdot$K$^{-1}\cdot$m$^{-1}\cdot$s$^{-1}$ (cf. [physics (cf. [physics guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf)).
guide](https://gitlab.aip.de/ziegler/NIRVANA/-/tree/master/doc/pdf/PhysicsGuide.pdf)).
User-defined coefficients, $\kappa_\parallel$ and $\kappa_\perp$, have User-defined coefficients, *κ*<sub></sub> and *κ*<sub></sub>,
to be assigned in module `conductionCoeffUser.c` in the function have to be assigned in module `conductionCoeffUser.c` in the function
conductionCoeffUser(g,cond,cond_perp); conductionCoeffUser(g,cond,cond_perp);
...@@ -1403,8 +1400,8 @@ i.e., it should be defined at location ...@@ -1403,8 +1400,8 @@ i.e., it should be defined at location
(`g->xc[ix]`,`g->yc[iy]`,`g->zc[iz]`). In HD simulations and in MHD (`g->xc[ix]`,`g->yc[iy]`,`g->zc[iz]`). In HD simulations and in MHD
simulations with forced isotropy (when `COND_FORCE_ISO`=`YES` in simulations with forced isotropy (when `COND_FORCE_ISO`=`YES` in
`nirvanaUser.h`) only the `cond`-array has to be assigned with `cond` `nirvanaUser.h`) only the `cond`-array has to be assigned with `cond`
representing now the conduction coefficient $\kappa$ in the isotropic representing now the conduction coefficient *κ* in the isotropic
heat flux $\mathbf{F}_\mathrm{C}=-\kappa \nabla T$. heat flux **F**<sub>*C*</sub> = −*κ**T*.
Thermal conduction with user-defined conduction coefficients is enabled Thermal conduction with user-defined conduction coefficients is enabled
by the appropriate choice of parameter `_C.conduction` in file by the appropriate choice of parameter `_C.conduction` in file
... ...
......