| ... | ... | @@ -974,7 +974,7 @@ integral form of $\mathbf{B}=\nabla\times \mathbf{A}$: |
|
|
|
where the difference operators *Δ*<sub>ix</sub>, *Δ*<sub>iy</sub>
|
|
|
|
and *Δ*<sub>iz</sub> are given by
|
|
|
|
|
|
|
|
*Δ*<sub>ix</sub>X=X(ix,iy,iz+1)-X(ix,iy,iz)
|
|
|
|
*Δ*<sub>ix</sub>X=X(ix+1,iy,iz)-X(ix,iy,iz)
|
|
|
|
|
|
|
|
*Δ*<sub>iy</sub>X=X(ix,iy+1,iz)-X(ix,iy,iz)
|
|
|
|
|
| ... | ... | @@ -1011,10 +1011,19 @@ for two problems: the Orszag-Tang vortex problem (example 1) and a |
|
|
|
shock-cloud interaction problem (example 2).
|
|
|
|
|
|
|
|
**Example 1** (taken from `/nirvana/testproblems/MHD/problem2`; cf.
|
|
|
|
\[[Z04](#references)\])
|
|
|
|
[Z04](#references))
|
|
|
|
|
|
|
|
IC for the Orszag-Tang vortex problem simulated in a doubly-periodic
|
|
|
|
square domain of length $L$ (given by `_C.up[0]-_C.lo[0]`):
|
|
|
|
square domain of length L (given by `_C.up[0]-_C.lo[0]`):
|
|
|
|
|
|
|
|
𝜚 = 𝜚<sub>0</sub>
|
|
|
|
**m** = 𝜚<sub>0</sub>(−sin(2*π* *y*/*L*),sin(2*π* *x*/*L*),0)
|
|
|
|
**B** = *B*<sub>0</sub>(−sin(2*π* *y*/*L*),sin(4*π* *x*/*L*),0)
|
|
|
|
*e* = *p*<sub>0</sub>/(*γ*−1) + **m**<sup>2</sup>/(2𝜚) + **B**<sup>2</sup>/(2*μ*)
|
|
|
|
|
|
|
|
where 𝜚<sub>0</sub>=2.77778, *p*<sub>0</sub>=5/3 and
|
|
|
|
*B*<sub>0</sub>=1. The adiabatic index *γ*=5/3 and the magnetic
|
|
|
|
permeability *μ*=1.
|
|
|
|
|
|
|
|
$\varrho = \varrho_0$
|
|
|
|
|
| ... | ... | |