version 4.2 authored by Udo Ziegler's avatar Udo Ziegler
...@@ -415,12 +415,10 @@ possible values or a numeric range. ...@@ -415,12 +415,10 @@ possible values or a numeric range.
Jeans-length-based mesh refinement criterion allowing a Jeans-length-based mesh refinement criterion allowing a
systematic reduction of the Jeans threshold with increasing systematic reduction of the Jeans threshold with increasing
refinement level $l$ according to the expression refinement level $l$ according to the expression
`_C.amr_Jeans`$-l*$`_C.amr_dJeans`, i.e., the local
Jeans length becomes gradually higher resolved with increasing $l$. Jeans length becomes gradually higher resolved with increasing $l$.
`_C.amr_dJeans` must be positiv. $y=10^{-7}$ $y=10^{-7}$ `_C.amr_dJeans` must be positiv.
`_C.amr_Jeans` $-l*$ `_C.amr_dJeans`, i.e., the local
$y=10^{-7}$
**Important**: `_C.amr_dJeans` must be chosen with care such **Important**: `_C.amr_dJeans` must be chosen with care such
that the actual Jeans threshold never becomes too small or that the actual Jeans threshold never becomes too small or
negative at some refinement level. Otherwise it will trigger negative at some refinement level. Otherwise it will trigger
...@@ -454,7 +452,6 @@ possible values or a numeric range. ...@@ -454,7 +452,6 @@ possible values or a numeric range.
- `06` (`_C.flag[0-7]`) - `06` (`_C.flag[0-7]`)
- `_C.flag[0-7]`: freely usable parameter of `int` type. - `_C.flag[0-7]`: freely usable parameter of `int` type.
$y=10^{-7}$
**SOLVER SPECIFICATIONS**: **SOLVER SPECIFICATIONS**:
...@@ -540,7 +537,7 @@ possible values or a numeric range. ...@@ -540,7 +537,7 @@ possible values or a numeric range.
- `_C.reactions_max_changeX` (typical value: $<0.1$): allowed - `_C.reactions_max_changeX` (typical value: $<0.1$): allowed
maximal relative change of species number densities (or total maximal relative change of species number densities (or total
number density) in the time integration of the chemo-thermal number density) in the time integration of the chemo-thermal
rate equations. $y=10^{-7}$ rate equations.
**Important:** The macro `SXN` in module `solveNCCM.c` is a **Important:** The macro `SXN` in module `solveNCCM.c` is a
linear weight applying `_C.reactions_max_change` to a combined linear weight applying `_C.reactions_max_change` to a combined
...@@ -580,8 +577,8 @@ possible values or a numeric range. ...@@ -580,8 +577,8 @@ possible values or a numeric range.
from the momentum equation and the induction equation is not from the momentum equation and the induction equation is not
solved. solved.
- `_C.permeability_rel`: relative magnetic permeability - `_C.permeability_rel`: relative magnetic permeability $\mu_{rel}$
$\mu_{rel}$ ($=\mu/\mu_0,\,\mu_0=4\pi\cdot10^{-7}\mathtt{V}\cdot\mathtt{m}^{-1}\cdot\mathtt{A}^{-1}\cdot\mathtt{s}^{-1}$). ($=\mu/\mu_0,\,\mu_0=4\pi\cdot10^{-7}\mathtt{V}\cdot\mathtt{m}^{-1}\cdot\mathtt{A}^{-1}\cdot\mathtt{s}^{-1}$).
**Important:** The Gaussian unit system can be mimicked by **Important:** The Gaussian unit system can be mimicked by
choosing a value ${\tt \_C.permeability\_rel}=10^7$ so that choosing a value ${\tt \_C.permeability\_rel}=10^7$ so that
...@@ -623,7 +620,7 @@ possible values or a numeric range. ...@@ -623,7 +620,7 @@ possible values or a numeric range.
`_C.conduction_coeff` (and `_C.conduction_coeff_perp` in the `_C.conduction_coeff` (and `_C.conduction_coeff_perp` in the
anisotropic case) described below. U enables thermal conduction anisotropic case) described below. U enables thermal conduction
with a user-defined conduction coefficient as coded in the user with a user-defined conduction coefficient as coded in the user
interface function **conductionCoeffUser()** (cf. [Thermal interface function `conductionCoeffUser()` (cf. [Thermal
conduction](#thermal-conduction)). S enables thermal conduction conduction](#thermal-conduction)). S enables thermal conduction
using the standard Spitzer conductivity model predefined in using the standard Spitzer conductivity model predefined in
NIRVANA (cf. [physics NIRVANA (cf. [physics
...@@ -650,8 +647,7 @@ possible values or a numeric range. ...@@ -650,8 +647,7 @@ possible values or a numeric range.
described below. U enables ambipolar diffusion with a described below. U enables ambipolar diffusion with a
user-defined anbipolar diffusion coefficient as coded in the user-defined anbipolar diffusion coefficient as coded in the
user interface function **APdiffusionCoeffUser()** (cf. user interface function **APdiffusionCoeffUser()** (cf.
[Ambipolar [Ambipolar diffusion](#user-defined-coefficient-for-ambipolar-diffusion)).
diffusion](#user-defined-coefficient-for-ambipolar-diffusion)).
N disables ambipolar diffusion. N disables ambipolar diffusion.
- `_C.APdiffusion_coeff`: constant ambipolar diffusion - `_C.APdiffusion_coeff`: constant ambipolar diffusion
...@@ -731,8 +727,8 @@ possible values or a numeric range. ...@@ -731,8 +727,8 @@ possible values or a numeric range.
adiabatic index is not a freely selectable parameter but is adiabatic index is not a freely selectable parameter but is
approximated by the expression approximated by the expression
$\gamma=\left[5(n_\mathrm{H}+n_\mathrm{He}+n_\mathrm{e})+7n_{\mathrm{H}_2}\right] $$\gamma=\left[5(n_\mathrm{H}+n_\mathrm{He}+n_\mathrm{e})+7n_{\mathrm{H}_2}\right]
/\left[3(n_\mathrm{H}+n_\mathrm{He}+n_\mathrm{e})+5n_{\mathrm{H}_2}\right]$. /\left[3(n_\mathrm{H}+n_\mathrm{He}+n_\mathrm{e})+5n_{\mathrm{H}_2}\right]$$.
- `_C.polytropic_constant`: polytropic constant in the polytropic - `_C.polytropic_constant`: polytropic constant in the polytropic
EOS. EOS.
...@@ -815,10 +811,10 @@ energy density $e$ is irrelevant since no energy equation is solved. In ...@@ -815,10 +811,10 @@ energy density $e$ is irrelevant since no energy equation is solved. In
HD simulations, the assignment of the magnetic field is redundant, of HD simulations, the assignment of the magnetic field is redundant, of
course, and would lead to an error because arrays for the magnetic field course, and would lead to an error because arrays for the magnetic field
components are not allocated in the HD case. Likewise, arrays for tracer components are not allocated in the HD case. Likewise, arrays for tracer
and species, $C_\mc$ and $n_\ms$, are not declared unless the parameters and species, $C_c$ and $n_s$, are not declared unless the parameters
`_C.tracer`$>0$ respective ${\tt\_C.species}>0$. If the TESTFIELDS `_C.tracer`$>0$ respective ${\tt\_C.species}>0$. If the TESTFIELDS
infrastructure is used (`_C.testfields`$>0$) testfields fluctuation infrastructure is used (`_C.testfields`$>0$) testfields fluctuation
variables, $\mathbf{b}_\mt,\,\mt=0,{\tt\_C.testfields}-1$, are also variables, $\mathbf{b}_t,\,t=0,{\tt\_C.testfields}-1$, are also
considered as primary variables and must be assigned by the user. The considered as primary variables and must be assigned by the user. The
parameter `_C.testfields` denotes the number of testfields. parameter `_C.testfields` denotes the number of testfields.
...@@ -851,7 +847,7 @@ structure](#mesh-data-structure). ...@@ -851,7 +847,7 @@ structure](#mesh-data-structure).
There are two types of mesh variables: cell-averaged variables and There are two types of mesh variables: cell-averaged variables and
face-averaged variables. Cell-averaged variables are face-averaged variables. Cell-averaged variables are
$\varrho,m_x,m_y,m_z,n_\ms,C_\mc$. It are described by cell-centroid $\varrho,m_x,m_y,m_z,n_s,C_c$. It are described by cell-centroid
coordinates. Face-averaged variables are the magnetic field components coordinates. Face-averaged variables are the magnetic field components
$B_x,B_y,B_z$ (and testfields). It are described by cell face-centroid $B_x,B_y,B_z$ (and testfields). It are described by cell face-centroid
coordinates. coordinates.
...@@ -950,13 +946,13 @@ divergence-free setup: ...@@ -950,13 +946,13 @@ divergence-free setup:
components by exact integration of given analytical expressions. For a components by exact integration of given analytical expressions. For a
grid cell (,,) on superblock `g` the discretized components would then grid cell (,,) on superblock `g` the discretized components would then
read read
$$\mathtt{g->bx[iz][iy][ix]}=\frac{1}{\d \mathcal{A}_x}\int $$\mathtt{g->bx[iz][iy][ix]}=\frac{1}{\delta \mathcal{A}_x}\int
\limits_\mathtt{g->y[iy]}^\mathtt{g->y[iy+1]} \limits_\mathtt{g->y[iy]}^\mathtt{g->y[iy+1]}
\int\limits_\mathtt{g->z[iz]}^\mathtt{g->z[iz+1]} B_x(\mathtt{g->x[ix]},y,z)h_yh_zdydz$$ \int\limits_\mathtt{g->z[iz]}^\mathtt{g->z[iz+1]} B_x(\mathtt{g->x[ix]},y,z)h_yh_zdydz$$
$$\mathtt{g->by[iz][iy][ix]}=\frac{1}{\d \mathcal{A}_y}\int $$\mathtt{g->by[iz][iy][ix]}=\frac{1}{\delta \mathcal{A}_y}\int
\limits_\mathtt{g->x[ix]}^\mathtt{g->x[ix+1]} \limits_\mathtt{g->x[ix]}^\mathtt{g->x[ix+1]}
\int\limits_\mathtt{g->z[iz]}^\mathtt{g->z[iz+1]} B_y(x,\mathtt{g->y[iy]},z)h_zdxdz$$ \int\limits_\mathtt{g->z[iz]}^\mathtt{g->z[iz+1]} B_y(x,\mathtt{g->y[iy]},z)h_zdxdz$$
$$\mathtt{g->bz[iz][iy][ix]}=\frac{1}{\d \mathcal{A}_z}\int $$\mathtt{g->bz[iz][iy][ix]}=\frac{1}{\delta \mathcal{A}_z}\int
\limits_\mathtt{g->x[ix]}^\mathtt{g->x[ix+1]} \limits_\mathtt{g->x[ix]}^\mathtt{g->x[ix+1]}
\int\limits_\mathtt{g->y[iy]}^\mathtt{g->y[iy+1]} B_z(x,y,\mathtt{g->z[iz]})h_ydxdy$$ \int\limits_\mathtt{g->y[iy]}^\mathtt{g->y[iy+1]} B_z(x,y,\mathtt{g->z[iz]})h_ydxdy$$
where the numerical expressions for the cell faces are: where the numerical expressions for the cell faces are:
...@@ -974,23 +970,23 @@ integration over cell faces turns out to be too complicated. ...@@ -974,23 +970,23 @@ integration over cell faces turns out to be too complicated.
The face-averaged magnetic field components are then obtained from the The face-averaged magnetic field components are then obtained from the
integral form of $\mathbf{B}=\nabla\times \mathbf{A}$: integral form of $\mathbf{B}=\nabla\times \mathbf{A}$:
`g->bx[iz][iy][ix]`$=\left[h_y\Delta_\miy (h_{zy}\hat{A}_z) `g->bx[iz][iy][ix]`$=\left[h_y\Delta_{iy} (h_{zy}\hat{A}_z)
-h_y\Delta_\miz \hat{A}_y\right]/\d \mathcal{A}_x$ -h_y\Delta_{iz} \hat{A}_y\right]/\delta \mathcal{A}_x$
`g->by[iz][iy][ix]`$=\left[\Delta_\miz \hat{A}_x `g->by[iz][iy][ix]`$=\left[\Delta_{iz} \hat{A}_x
-h_{zy}\Delta_\mix (h_y\hat{A}_z)\right]/\d \mathcal{A}_y$ -h_{zy}\Delta_{ix} (h_y\hat{A}_z)\right]/\delta \mathcal{A}_y$
`g->bz[iz][iy][ix]`$=\left[\Delta_\mix (h_y\hat{A}_y) `g->bz[iz][iy][ix]`$=\left[\Delta_{ix} (h_y\hat{A}_y)
-\Delta_\miy \hat{A}_x\right]/\d \mathcal{A}_z$ -\Delta_{iy} \hat{A}_x\right]/\delta \mathcal{A}_z$
where the difference operators $\Delta_\mix$, $\Delta_\miy$ and where the difference operators $\Delta_{ix}$, $\Delta_{iy}$ and
$\Delta_\miz$ are given by $\Delta_{iz}$ are given by
$\Delta_{\mix}X=X(\mathtt{ix+1,iy,iz})-X(\mathtt{ix,iy,iz})$, $\Delta_{ix}X=X(\mathtt{ix+1,iy,iz})-X(\mathtt{ix,iy,iz})$,
$\Delta_{\miy}X=X(\mathtt{ix,iy+1,iz})-X(\mathtt{ix,iy,iz})$, $\Delta_{iy}X=X(\mathtt{ix,iy+1,iz})-X(\mathtt{ix,iy,iz})$,
$\Delta_{\miz}X=X(\mathtt{ix,iy,iz+1})-X(\mathtt{ix,iy,iz})$ $\Delta_{iz}X=X(\mathtt{ix,iy,iz+1})-X(\mathtt{ix,iy,iz})$
and $(\hat{A}_x,\hat{A}_y,\hat{A}_z)$ are the cell-edge integrals and $(\hat{A}_x,\hat{A}_y,\hat{A}_z)$ are the cell-edge integrals
...@@ -1436,7 +1432,7 @@ by the appropriate choice of parameter `_C.conduction` in file ...@@ -1436,7 +1432,7 @@ by the appropriate choice of parameter `_C.conduction` in file
Ohmic diffusion enters the induction equation and energy equation as a Ohmic diffusion enters the induction equation and energy equation as a
field contribution given by field contribution given by
$\mathbf{E}_\mathrm{D}=\eta_\mathrm{D} \nabla\times\mathbf{B}$ $$\mathbf{E}_\mathrm{D}=\eta_\mathrm{D} \nabla\times\mathbf{B}$$
where $\eta_\mathrm{D}$ in units \[m$^2\cdot$s$^{-1}$\] is the diffusion where $\eta_\mathrm{D}$ in units \[m$^2\cdot$s$^{-1}$\] is the diffusion
coefficient. coefficient.
...@@ -1475,8 +1471,8 @@ user-defined ambipolar diffusion coefficient. ...@@ -1475,8 +1471,8 @@ user-defined ambipolar diffusion coefficient.
Ambipolar diffusion enters the induction equation and energy equation as Ambipolar diffusion enters the induction equation and energy equation as
a field contribution given by a field contribution given by
$\mathbf{E}_\mathrm{AD}=\eta_\mathrm{AD}/\mu\mathbf{B}\times\left[(\nabla\times\mathbf{B}) $$\mathbf{E}_\mathrm{AD}=\eta_\mathrm{AD}/\mu\mathbf{B}\times\left[(\nabla\times\mathbf{B})
\times\mathbf{B}\right]$ \times\mathbf{B}\right]$$
where $\eta_\mathrm{AD}$ \[V$\cdot$m$\cdot$A$^{-1}\cdot$T$^{-2}$\] where $\eta_\mathrm{AD}$ \[V$\cdot$m$\cdot$A$^{-1}\cdot$T$^{-2}$\]
denotes the ambipolar diffusion coefficient. The prefactor denotes the ambipolar diffusion coefficient. The prefactor
... ...
......