Changes
Page history
version 4.2
authored
Oct 29, 2025
by
Udo Ziegler
Hide whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.2-User-interfaces.md
View page @
a24f6a76
...
@@ -180,7 +180,7 @@ possible values or a numeric range.
...
@@ -180,7 +180,7 @@ possible values or a numeric range.
-
`01`
(
`_C.geometry`
,
`_C.omega[0-2]`
)
-
`01`
(
`_C.geometry`
,
`_C.omega[0-2]`
)
- `_C.geometry` ({CART,CYL,SPH}): choice of coordinate system
where
- `_C.geometry` ({CART,CYL,SPH}): choice of coordinate system
- CART: Cartesian
- CART: Cartesian
- CYL: cylindrical
- CYL: cylindrical
- SPH: spherical
- SPH: spherical
...
@@ -203,32 +203,32 @@ possible values or a numeric range.
...
@@ -203,32 +203,32 @@ possible values or a numeric range.
-
`01`
(
`_C.lo[0]`
,
`_C.up[0]`
,
`_C.dim[0]`
)
-
`01`
(
`_C.lo[0]`
,
`_C.up[0]`
,
`_C.dim[0]`
)
- `_C.lo[0]`,\_C.up\[0\]: lower,upper
**x**
-coordinate of the
- `_C.lo[0]`,\_C.up\[0\]: lower,upper
x
-coordinate of the
computational domain.
computational domain.
- `_C.dim[0]`: number of *base-level* grid points in
- `_C.dim[0]`: number of *base-level* grid points in
**x**
-direction. `_C.dim[0]` must be an integral factor of 4, and
x
-direction. `_C.dim[0]` must be an integral factor of 4, and
excludes ghost cells which are automatically added by the code.
excludes ghost cells which are automatically added by the code.
-
`02`
(
`_C.lo[1]`
,
`_C.up[1]`
,
`_C.dim[1]`
)
-
`02`
(
`_C.lo[1]`
,
`_C.up[1]`
,
`_C.dim[1]`
)
- `_C.lo[1]`,`_C.up[1]`: lower,upper
**y**
-coordinate of the
- `_C.lo[1]`,`_C.up[1]`: lower,upper
y
-coordinate of the
computational domain. In case of spherical geometry
computational domain. In case of spherical geometry
($y\equiv \theta$) `_C.lo[1]`,`_C.up[1]` have to be specified in
($y\equiv \theta$) `_C.lo[1]`,`_C.up[1]` have to be specified in
units of $\pi$.
units of $\pi$.
- `_C.dim[1]`: number of *base-level* grid points in
- `_C.dim[1]`: number of *base-level* grid points in
**y**
-direction. `_C.dim[1]` must be a multiple factor of 4.
y
-direction. `_C.dim[1]` must be a multiple factor of 4.
-
`03`
(
`_C.lo[2]`
,
`_C.up[2]`
,
`_C.dim[2]`
)
-
`03`
(
`_C.lo[2]`
,
`_C.up[2]`
,
`_C.dim[2]`
)
- `_C.lo[2]`,`_C.up[2]`: lower,upper
**z**
-coordinate of the
- `_C.lo[2]`,`_C.up[2]`: lower,upper
z
-coordinate of the
computational domain. In case of cylindrical- or spherical
computational domain. In case of cylindrical- or spherical
geometry ($z\equiv \phi$) `_C.lo[2]`,`_C.up[2]` have to be
geometry ($z\equiv \phi$) `_C.lo[2]`,`_C.up[2]` have to be
specified in units of $\pi$.
specified in units of $\pi$.
- `_C.dim[2]`: number of *base-level* grid points in
- `_C.dim[2]`: number of *base-level* grid points in
**z**
-direction. `_C.dim[2]` must be a multiple factor of 4. If
z
-direction. `_C.dim[2]` must be a multiple factor of 4. If
`_C.dim[2]`=0 the simulation is assumed 2D, i.e., axisymmetric
`_C.dim[2]`=0 the simulation is assumed 2D, i.e., axisymmetric
in case of cylindrical- or spherical coordinates.
in case of cylindrical- or spherical coordinates.
...
@@ -242,7 +242,7 @@ possible values or a numeric range.
...
@@ -242,7 +242,7 @@ possible values or a numeric range.
SFC-decomposition is automatically used instead.
SFC-decomposition is automatically used instead.
- `_C.bnx`,`_C.bny`,`_C.bnz`: number of domain subdivisions in
- `_C.bnx`,`_C.bny`,`_C.bnz`: number of domain subdivisions in
**
x,y,z
**
-direction in case \_C.partitioning_type=BLOCK. Numbers
x,y,z-direction in case \_C.partitioning_type=BLOCK. Numbers
must be chosen such that the grid dimension of subdomains is a
must be chosen such that the grid dimension of subdomains is a
multiple factor of 4 in each coordinate direction. Moreover, the
multiple factor of 4 in each coordinate direction. Moreover, the
total number of subdomains must equal the number of MPI threads,
total number of subdomains must equal the number of MPI threads,
...
@@ -259,9 +259,9 @@ possible values or a numeric range.
...
@@ -259,9 +259,9 @@ possible values or a numeric range.
conditions. The type of boundary condition at a physical domain
conditions. The type of boundary condition at a physical domain
boundary is characterized by a single capital letter. It are
boundary is characterized by a single capital letter. It are
grouped in a 6-letters word with the individual letter
grouped in a 6-letters word with the individual letter
representing, from left to right, the lower-
**x**
(`_C.bc[0]`),
representing, from left to right, the lower-
x
(`_C.bc[0]`),
upper-
**x**
(`_C.bc[1]`), lower-
**y**
(`_C.bc[2]`), upper-
**y**
upper-
x
(`_C.bc[1]`), lower-
y
(`_C.bc[2]`), upper-
y
(`_C.bc[3]`), lower-
**z**
(`_C.bc[4]`) and upper-
**z**
(`_C.bc[5]`)
(`_C.bc[3]`), lower-
z
(`_C.bc[4]`) and upper-
z
(`_C.bc[5]`)
domain boundary. Possible boundary condition types are
domain boundary. Possible boundary condition types are
($u_{i/o}$: inner/outer-domain boundary values of a variable
($u_{i/o}$: inner/outer-domain boundary values of a variable
$u$):
$u$):
...
@@ -298,14 +298,14 @@ possible values or a numeric range.
...
@@ -298,14 +298,14 @@ possible values or a numeric range.
$u_o=u_i$ for the perpendicular magnetic field component.
$u_o=u_i$ for the perpendicular magnetic field component.
- `R`: reflection-on-axis (only of relevance in cylindrical
- `R`: reflection-on-axis (only of relevance in cylindrical
geometry at the
**y**
-lower boundary at $R=0$ or in
geometry at the
y
-lower boundary at $R=0$ or in
spherical geometry at the
**y**
-lower/upper boundaries at
spherical geometry at the
y
-lower/upper boundaries at
$\theta =0,\pi$) - reflecting conditions at the geometric
$\theta =0,\pi$) - reflecting conditions at the geometric
axis. Same as M except for the azimutal magnetic field
axis. Same as M except for the azimutal magnetic field
component for which $u_o=-u_i$.
component for which $u_o=-u_i$.
- `C`: reflection-at-center (only of relevance in spherical
- `C`: reflection-at-center (only of relevance in spherical
geometry at the
**x**
-lower boundary at $r=0$) - reflecting
geometry at the
x
-lower boundary at $r=0$) - reflecting
conditions at the coordinate center. Same as M except for
conditions at the coordinate center. Same as M except for
the non-radial magnetic field components for which
the non-radial magnetic field components for which
$u_o=-u_i$.
$u_o=-u_i$.
...
@@ -317,9 +317,9 @@ possible values or a numeric range.
...
@@ -317,9 +317,9 @@ possible values or a numeric range.
(pseudo-vacuum condition) for the magnetic field.
(pseudo-vacuum condition) for the magnetic field.
- `F`: free boundary (only of relevance in cylindrical
- `F`: free boundary (only of relevance in cylindrical
geometry at the
**y**
-lower boundary at $R=0$ or in
geometry at the
y
-lower boundary at $R=0$ or in
spherical geometry at the
**y**
-lower/upper boundaries at
spherical geometry at the
y
-lower/upper boundaries at
$\theta =0,\pi$ and
**x**
-lower boundary at $r=0$) -
$\theta =0,\pi$ and
x
-lower boundary at $r=0$) -
'natural' boundary condition at the geometric axis. Boundary
'natural' boundary condition at the geometric axis. Boundary
values are not set explictely but are implicitly given by
values are not set explictely but are implicitly given by
$\pi$-shifted values. Note that when a `F`-type boundary
$\pi$-shifted values. Note that when a `F`-type boundary
...
@@ -578,11 +578,11 @@ possible values or a numeric range.
...
@@ -578,11 +578,11 @@ possible values or a numeric range.
from the momentum equation and the induction equation is not
from the momentum equation and the induction equation is not
solved.
solved.
- `_C.permeability_rel`: relative magnetic permeability
$\mu_{rel}$
- `_C.permeability_rel`: relative magnetic permeability
(
$=\mu /\mu_0
$,$
\mu_0 =4\pi\cdot 10^{-7}V\cdot m^{-1}\cdot A^{-1}\cdot s^{-1}
$
).
$
\mu_{rel} (
=\mu /\mu_0
,\,
\mu_0 =4\pi\cdot 10^{-7}V\cdot m^{-1}\cdot A^{-1}\cdot s^{-1})
$
.
**Important:** The Gaussian unit system can be mimicked by
**Important:** The Gaussian unit system can be mimicked by
choosing a value `_C.permeability_rel`
$=10^7$ so that
choosing a value `_C.permeability_rel`$=10^7$ so that
the magnetic permeability is $\mu =4\pi$.
the magnetic permeability is $\mu =4\pi$.
-
`02`
(
`_C.viscosity`
,
`_C.viscosity_coeff`
)
-
`02`
(
`_C.viscosity`
,
`_C.viscosity_coeff`
)
...
...
...
...