Changes
Page history
version 4.2
authored
Oct 29, 2025
by
Udo Ziegler
Hide whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.2-User-interfaces.md
View page @
a24f6a76
...
...
@@ -180,7 +180,7 @@ possible values or a numeric range.
-
`01`
(
`_C.geometry`
,
`_C.omega[0-2]`
)
- `_C.geometry` ({CART,CYL,SPH}): choice of coordinate system
where
- `_C.geometry` ({CART,CYL,SPH}): choice of coordinate system
- CART: Cartesian
- CYL: cylindrical
- SPH: spherical
...
...
@@ -203,32 +203,32 @@ possible values or a numeric range.
-
`01`
(
`_C.lo[0]`
,
`_C.up[0]`
,
`_C.dim[0]`
)
- `_C.lo[0]`,\_C.up\[0\]: lower,upper
**x**
-coordinate of the
- `_C.lo[0]`,\_C.up\[0\]: lower,upper
x
-coordinate of the
computational domain.
- `_C.dim[0]`: number of *base-level* grid points in
**x**
-direction. `_C.dim[0]` must be an integral factor of 4, and
x
-direction. `_C.dim[0]` must be an integral factor of 4, and
excludes ghost cells which are automatically added by the code.
-
`02`
(
`_C.lo[1]`
,
`_C.up[1]`
,
`_C.dim[1]`
)
- `_C.lo[1]`,`_C.up[1]`: lower,upper
**y**
-coordinate of the
- `_C.lo[1]`,`_C.up[1]`: lower,upper
y
-coordinate of the
computational domain. In case of spherical geometry
($y\equiv \theta$) `_C.lo[1]`,`_C.up[1]` have to be specified in
units of $\pi$.
- `_C.dim[1]`: number of *base-level* grid points in
**y**
-direction. `_C.dim[1]` must be a multiple factor of 4.
y
-direction. `_C.dim[1]` must be a multiple factor of 4.
-
`03`
(
`_C.lo[2]`
,
`_C.up[2]`
,
`_C.dim[2]`
)
- `_C.lo[2]`,`_C.up[2]`: lower,upper
**z**
-coordinate of the
- `_C.lo[2]`,`_C.up[2]`: lower,upper
z
-coordinate of the
computational domain. In case of cylindrical- or spherical
geometry ($z\equiv \phi$) `_C.lo[2]`,`_C.up[2]` have to be
specified in units of $\pi$.
- `_C.dim[2]`: number of *base-level* grid points in
**z**
-direction. `_C.dim[2]` must be a multiple factor of 4. If
z
-direction. `_C.dim[2]` must be a multiple factor of 4. If
`_C.dim[2]`=0 the simulation is assumed 2D, i.e., axisymmetric
in case of cylindrical- or spherical coordinates.
...
...
@@ -242,7 +242,7 @@ possible values or a numeric range.
SFC-decomposition is automatically used instead.
- `_C.bnx`,`_C.bny`,`_C.bnz`: number of domain subdivisions in
**
x,y,z
**
-direction in case \_C.partitioning_type=BLOCK. Numbers
x,y,z-direction in case \_C.partitioning_type=BLOCK. Numbers
must be chosen such that the grid dimension of subdomains is a
multiple factor of 4 in each coordinate direction. Moreover, the
total number of subdomains must equal the number of MPI threads,
...
...
@@ -259,9 +259,9 @@ possible values or a numeric range.
conditions. The type of boundary condition at a physical domain
boundary is characterized by a single capital letter. It are
grouped in a 6-letters word with the individual letter
representing, from left to right, the lower-
**x**
(`_C.bc[0]`),
upper-
**x**
(`_C.bc[1]`), lower-
**y**
(`_C.bc[2]`), upper-
**y**
(`_C.bc[3]`), lower-
**z**
(`_C.bc[4]`) and upper-
**z**
(`_C.bc[5]`)
representing, from left to right, the lower-
x
(`_C.bc[0]`),
upper-
x
(`_C.bc[1]`), lower-
y
(`_C.bc[2]`), upper-
y
(`_C.bc[3]`), lower-
z
(`_C.bc[4]`) and upper-
z
(`_C.bc[5]`)
domain boundary. Possible boundary condition types are
($u_{i/o}$: inner/outer-domain boundary values of a variable
$u$):
...
...
@@ -298,14 +298,14 @@ possible values or a numeric range.
$u_o=u_i$ for the perpendicular magnetic field component.
- `R`: reflection-on-axis (only of relevance in cylindrical
geometry at the
**y**
-lower boundary at $R=0$ or in
spherical geometry at the
**y**
-lower/upper boundaries at
geometry at the
y
-lower boundary at $R=0$ or in
spherical geometry at the
y
-lower/upper boundaries at
$\theta =0,\pi$) - reflecting conditions at the geometric
axis. Same as M except for the azimutal magnetic field
component for which $u_o=-u_i$.
- `C`: reflection-at-center (only of relevance in spherical
geometry at the
**x**
-lower boundary at $r=0$) - reflecting
geometry at the
x
-lower boundary at $r=0$) - reflecting
conditions at the coordinate center. Same as M except for
the non-radial magnetic field components for which
$u_o=-u_i$.
...
...
@@ -317,9 +317,9 @@ possible values or a numeric range.
(pseudo-vacuum condition) for the magnetic field.
- `F`: free boundary (only of relevance in cylindrical
geometry at the
**y**
-lower boundary at $R=0$ or in
spherical geometry at the
**y**
-lower/upper boundaries at
$\theta =0,\pi$ and
**x**
-lower boundary at $r=0$) -
geometry at the
y
-lower boundary at $R=0$ or in
spherical geometry at the
y
-lower/upper boundaries at
$\theta =0,\pi$ and
x
-lower boundary at $r=0$) -
'natural' boundary condition at the geometric axis. Boundary
values are not set explictely but are implicitly given by
$\pi$-shifted values. Note that when a `F`-type boundary
...
...
@@ -578,11 +578,11 @@ possible values or a numeric range.
from the momentum equation and the induction equation is not
solved.
- `_C.permeability_rel`: relative magnetic permeability
$\mu_{rel}$
(
$=\mu /\mu_0
$,$
\mu_0 =4\pi\cdot 10^{-7}V\cdot m^{-1}\cdot A^{-1}\cdot s^{-1}
$
).
- `_C.permeability_rel`: relative magnetic permeability
$
\mu_{rel} (
=\mu /\mu_0
,\,
\mu_0 =4\pi\cdot 10^{-7}V\cdot m^{-1}\cdot A^{-1}\cdot s^{-1})
$
.
**Important:** The Gaussian unit system can be mimicked by
choosing a value `_C.permeability_rel`
$=10^7$ so that
choosing a value `_C.permeability_rel`$=10^7$ so that
the magnetic permeability is $\mu =4\pi$.
-
`02`
(
`_C.viscosity`
,
`_C.viscosity_coeff`
)
...
...
...
...