version 4.2 authored by Udo Ziegler's avatar Udo Ziegler
......@@ -180,7 +180,7 @@ possible values or a numeric range.
- `01` (`_C.geometry`, `_C.omega[0-2]`)
- `_C.geometry` ({CART,CYL,SPH}): choice of coordinate system where
- `_C.geometry` ({CART,CYL,SPH}): choice of coordinate system
- CART: Cartesian
- CYL: cylindrical
- SPH: spherical
......@@ -203,32 +203,32 @@ possible values or a numeric range.
- `01` (`_C.lo[0]`, `_C.up[0]`, `_C.dim[0]`)
- `_C.lo[0]`,\_C.up\[0\]: lower,upper **x**-coordinate of the
- `_C.lo[0]`,\_C.up\[0\]: lower,upper x-coordinate of the
computational domain.
- `_C.dim[0]`: number of *base-level* grid points in
**x**-direction. `_C.dim[0]` must be an integral factor of 4, and
x-direction. `_C.dim[0]` must be an integral factor of 4, and
excludes ghost cells which are automatically added by the code.
- `02` (`_C.lo[1]`, `_C.up[1]`, `_C.dim[1]`)
- `_C.lo[1]`,`_C.up[1]`: lower,upper **y**-coordinate of the
- `_C.lo[1]`,`_C.up[1]`: lower,upper y-coordinate of the
computational domain. In case of spherical geometry
($y\equiv \theta$) `_C.lo[1]`,`_C.up[1]` have to be specified in
units of $\pi$.
- `_C.dim[1]`: number of *base-level* grid points in
**y**-direction. `_C.dim[1]` must be a multiple factor of 4.
y-direction. `_C.dim[1]` must be a multiple factor of 4.
- `03` (`_C.lo[2]`, `_C.up[2]`, `_C.dim[2]`)
- `_C.lo[2]`,`_C.up[2]`: lower,upper **z**-coordinate of the
- `_C.lo[2]`,`_C.up[2]`: lower,upper z-coordinate of the
computational domain. In case of cylindrical- or spherical
geometry ($z\equiv \phi$) `_C.lo[2]`,`_C.up[2]` have to be
specified in units of $\pi$.
- `_C.dim[2]`: number of *base-level* grid points in
**z**-direction. `_C.dim[2]` must be a multiple factor of 4. If
z-direction. `_C.dim[2]` must be a multiple factor of 4. If
`_C.dim[2]`=0 the simulation is assumed 2D, i.e., axisymmetric
in case of cylindrical- or spherical coordinates.
......@@ -242,7 +242,7 @@ possible values or a numeric range.
SFC-decomposition is automatically used instead.
- `_C.bnx`,`_C.bny`,`_C.bnz`: number of domain subdivisions in
**x,y,z**-direction in case \_C.partitioning_type=BLOCK. Numbers
x,y,z-direction in case \_C.partitioning_type=BLOCK. Numbers
must be chosen such that the grid dimension of subdomains is a
multiple factor of 4 in each coordinate direction. Moreover, the
total number of subdomains must equal the number of MPI threads,
......@@ -259,9 +259,9 @@ possible values or a numeric range.
conditions. The type of boundary condition at a physical domain
boundary is characterized by a single capital letter. It are
grouped in a 6-letters word with the individual letter
representing, from left to right, the lower-**x** (`_C.bc[0]`),
upper-**x** (`_C.bc[1]`), lower-**y** (`_C.bc[2]`), upper-**y**
(`_C.bc[3]`), lower-**z** (`_C.bc[4]`) and upper-**z** (`_C.bc[5]`)
representing, from left to right, the lower-x (`_C.bc[0]`),
upper-x (`_C.bc[1]`), lower-y (`_C.bc[2]`), upper-y
(`_C.bc[3]`), lower-z (`_C.bc[4]`) and upper-z (`_C.bc[5]`)
domain boundary. Possible boundary condition types are
($u_{i/o}$: inner/outer-domain boundary values of a variable
$u$):
......@@ -298,14 +298,14 @@ possible values or a numeric range.
$u_o=u_i$ for the perpendicular magnetic field component.
- `R`: reflection-on-axis (only of relevance in cylindrical
geometry at the **y**-lower boundary at $R=0$ or in
spherical geometry at the **y**-lower/upper boundaries at
geometry at the y-lower boundary at $R=0$ or in
spherical geometry at the y-lower/upper boundaries at
$\theta =0,\pi$) - reflecting conditions at the geometric
axis. Same as M except for the azimutal magnetic field
component for which $u_o=-u_i$.
- `C`: reflection-at-center (only of relevance in spherical
geometry at the **x**-lower boundary at $r=0$) - reflecting
geometry at the x-lower boundary at $r=0$) - reflecting
conditions at the coordinate center. Same as M except for
the non-radial magnetic field components for which
$u_o=-u_i$.
......@@ -317,9 +317,9 @@ possible values or a numeric range.
(pseudo-vacuum condition) for the magnetic field.
- `F`: free boundary (only of relevance in cylindrical
geometry at the **y**-lower boundary at $R=0$ or in
spherical geometry at the **y**-lower/upper boundaries at
$\theta =0,\pi$ and **x**-lower boundary at $r=0$) -
geometry at the y-lower boundary at $R=0$ or in
spherical geometry at the y-lower/upper boundaries at
$\theta =0,\pi$ and x-lower boundary at $r=0$) -
'natural' boundary condition at the geometric axis. Boundary
values are not set explictely but are implicitly given by
$\pi$-shifted values. Note that when a `F`-type boundary
......@@ -578,11 +578,11 @@ possible values or a numeric range.
from the momentum equation and the induction equation is not
solved.
- `_C.permeability_rel`: relative magnetic permeability $\mu_{rel}$
($=\mu /\mu_0$,$\mu_0 =4\pi\cdot 10^{-7}V\cdot m^{-1}\cdot A^{-1}\cdot s^{-1}$).
- `_C.permeability_rel`: relative magnetic permeability
$\mu_{rel} (=\mu /\mu_0,\,\mu_0 =4\pi\cdot 10^{-7}V\cdot m^{-1}\cdot A^{-1}\cdot s^{-1})$.
**Important:** The Gaussian unit system can be mimicked by
choosing a value `_C.permeability_rel` $=10^7$ so that
choosing a value `_C.permeability_rel`$=10^7$ so that
the magnetic permeability is $\mu =4\pi$.
- `02` (`_C.viscosity`, `_C.viscosity_coeff`)
......
......