| ... | @@ -971,7 +971,7 @@ integration over cell faces turns out to be too complicated. |
... | @@ -971,7 +971,7 @@ integration over cell faces turns out to be too complicated. |
|
|
The face-averaged magnetic field components are then obtained from the
|
|
The face-averaged magnetic field components are then obtained from the
|
|
|
integral form of $\mathbf{B}=\nabla\times \mathbf{A}$:
|
|
integral form of $\mathbf{B}=\nabla\times \mathbf{A}$:
|
|
|
|
|
|
|
|
`g->bx[iz][iy][ix]`$=\left[h_y\Delta_{iy} (h_{zy}\hat{A}_z)
|
|
$\mathtt{g->bx[iz][iy][ix]}=\left[h_y\Delta_{iy} (h_{zy}\hat{A}_z)
|
|
|
-h_y\Delta_{iz} \hat{A}_y\right]/\delta \mathcal{A}_x$
|
|
-h_y\Delta_{iz} \hat{A}_y\right]/\delta \mathcal{A}_x$
|
|
|
|
|
|
|
|
`g->by[iz][iy][ix]`$=\left[\Delta_{iz} \hat{A}_x
|
|
`g->by[iz][iy][ix]`$=\left[\Delta_{iz} \hat{A}_x
|
| ... | | ... | |