version 4.2 authored by Udo Ziegler's avatar Udo Ziegler
...@@ -971,7 +971,7 @@ integration over cell faces turns out to be too complicated. ...@@ -971,7 +971,7 @@ integration over cell faces turns out to be too complicated.
The face-averaged magnetic field components are then obtained from the The face-averaged magnetic field components are then obtained from the
integral form of $\mathbf{B}=\nabla\times \mathbf{A}$: integral form of $\mathbf{B}=\nabla\times \mathbf{A}$:
`g->bx[iz][iy][ix]`$=\left[h_y\Delta_{iy} (h_{zy}\hat{A}_z) $\mathtt{g->bx[iz][iy][ix]}=\left[h_y\Delta_{iy} (h_{zy}\hat{A}_z)
-h_y\Delta_{iz} \hat{A}_y\right]/\delta \mathcal{A}_x$ -h_y\Delta_{iz} \hat{A}_y\right]/\delta \mathcal{A}_x$
`g->by[iz][iy][ix]`$=\left[\Delta_{iz} \hat{A}_x `g->by[iz][iy][ix]`$=\left[\Delta_{iz} \hat{A}_x
... ...
......