Changes
Page history
version 4.2
authored
Oct 29, 2025
by
Udo Ziegler
Hide whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.2-User-interfaces.md
View page @
fed9ad08
...
@@ -950,16 +950,6 @@ read
...
@@ -950,16 +950,6 @@ read


`g->bx[iz][iy][ix]`
$=
\f
rac{1}{
\d
elta
\m
athcal{A}_x}
\i
nt
\l
imits_
\m
athtt{g->y[iy]}^
\m
athtt{g->y[iy+1]}
\i
nt
\l
imits_
\m
athtt{g->z[iz]}^
\m
athtt{g->z[iz+1]} B_x(
\m
athtt{g->x[ix]},y,z)h_yh_zdydz$
$$
\m
athtt{g->by
[
iz
][
iy
]
[ix]}=
\f
rac{1}{
\d
elta
\m
athcal{A}_y}
\i
nt
\l
imits_
\m
athtt{g->x[ix]}^
\m
athtt{g->x[ix+1]}
\i
nt
\l
imits_
\m
athtt{g->z[iz]}^
\m
athtt{g->z[iz+1]} B_y(x,
\m
athtt{g->y[iy]},z)h_zdxdz$$
$$
\m
athtt{g->bz
[
iz
][
iy
]
[ix]}=
\f
rac{1}{
\d
elta
\m
athcal{A}_z}
\i
nt
\l
imits_
\m
athtt{g->x[ix]}^
\m
athtt{g->x[ix+1]}
\i
nt
\l
imits_
\m
athtt{g->y[iy]}^
\m
athtt{g->y[iy+1]} B_z(x,y,
\m
athtt{g->z[iz]})h_ydxdy$$
where the numerical expressions for the cell faces are:
where the numerical expressions for the cell faces are:
| cell face | expression |
| cell face | expression |
...
@@ -975,6 +965,16 @@ integration over cell faces turns out to be too complicated.
...
@@ -975,6 +965,16 @@ integration over cell faces turns out to be too complicated.
The face-averaged magnetic field components are then obtained from the
The face-averaged magnetic field components are then obtained from the
integral form of $
\m
athbf{B}=
\n
abla
\t
imes
\m
athbf{A}$:
integral form of $
\m
athbf{B}=
\n
abla
\t
imes
\m
athbf{A}$:
`g->bx[iz][iy][ix]`
=
\[
*h*
<sub>
*y*
</sub>
*Δ*
<sub>
`iy`
</sub>
(
*h*
<sub>
*zy*
</sub>
*Â*
<sub>
*z*
</sub>
)−
*h*
<sub>
*y*
</sub>
*Δ*
<sub>
`iz`
</sub>
*Â*
<sub>
*y*
</sub>
\]
/
*δ*
𝒜
<sub>
*x*
</sub>
`g->by[iz][iy][ix]`
=
\[
*Δ*
<sub>
`iz`
</sub>
*Â*
<sub>
*x*
</sub>
−
*h*
<sub>
*zy*
</sub>
*Δ*
<sub>
`ix`
</sub>
(
*h*
<sub>
*y*
</sub>
*Â*
<sub>
*z*
</sub>
)
\]
/
*δ*
𝒜
<sub>
*y*
</sub>
`g->bz[iz][iy][ix]`
=
\[
*Δ*
<sub>
`ix`
</sub>
(
*h*
<sub>
*y*
</sub>
*Â*
<sub>
*y*
</sub>
)−
*Δ*
<sub>
`iy`
</sub>
*Â*
<sub>
*x*
</sub>
\]
/
*δ*
𝒜
<sub>
*z*
</sub>
where (
*Â*
<sub>
*x*
</sub>
,
*Â*
<sub>
*y*
</sub>
,
*Â*
<sub>
*z*
</sub>
) denote
the path integrals
`g->bx[iz][iy][ix]`
$=
\l
eft[h_y
\D
elta_{iy} (h_{zy}
\h
at{A}_z)
`g->bx[iz][iy][ix]`
$=
\l
eft[h_y
\D
elta_{iy} (h_{zy}
\h
at{A}_z)
-h_y
\D
elta_{iz}
\h
at{A}_y
\r
ight]/
\d
elta
\m
athcal{A}_x$
-h_y
\D
elta_{iz}
\h
at{A}_y
\r
ight]/
\d
elta
\m
athcal{A}_x$
...
@@ -995,6 +995,8 @@ $\Delta_{iz}X=X(\mathtt{iz,iy,ix+1})-X(\mathtt{iz,iy,ix})$
...
@@ -995,6 +995,8 @@ $\Delta_{iz}X=X(\mathtt{iz,iy,ix+1})-X(\mathtt{iz,iy,ix})$
and $(
\h
at{A}_x,
\h
at{A}_y,
\h
at{A}_z)$ are the cell-edge integrals
and $(
\h
at{A}_x,
\h
at{A}_y,
\h
at{A}_z)$ are the cell-edge integrals

$$
\h
at{A}_x(
\m
athtt{iz,iy,ix})=
\i
nt
\l
imits_
\m
athtt{g->x[ix]}^
\m
athtt{g->x[ix+1]}
$$
\h
at{A}_x(
\m
athtt{iz,iy,ix})=
\i
nt
\l
imits_
\m
athtt{g->x[ix]}^
\m
athtt{g->x[ix+1]}
A_x(x,
\m
athtt{g->y[iy]},
\m
athtt{g->z[iz]})dx$$
A_x(x,
\m
athtt{g->y[iy]},
\m
athtt{g->z[iz]})dx$$
...
...
...
...