| ... | ... | @@ -415,12 +415,10 @@ possible values or a numeric range. | 
| 
 | 
 | 
        Jeans-length-based mesh refinement criterion allowing a
 | 
| 
 | 
 | 
        systematic reduction of the Jeans threshold with increasing
 | 
| 
 | 
 | 
        refinement level $l$ according to the expression 
 | 
| 
 | 
 | 
        Jeans length becomes gradually higher resolved with increasing $l$. 
 | 
| 
 | 
 | 
        `_C.amr_dJeans` must be positiv.   $y=10^{-7}$ $y=10^{-7}$ 
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
        `_C.amr_Jeans`$-l*$`_C.amr_dJeans`, i.e., the local  
 | 
| 
 | 
 | 
        Jeans length becomes gradually higher resolved with increasing $l$. 
 | 
| 
 | 
 | 
        `_C.amr_dJeans` must be positiv. 
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
        $y=10^{-7}$
 | 
| 
 | 
 | 
        **Important**: `_C.amr_dJeans` must be chosen with care such
 | 
| 
 | 
 | 
        that the actual Jeans threshold never becomes too small or
 | 
| 
 | 
 | 
        negative at some refinement level. Otherwise it will trigger
 | 
| ... | ... | @@ -454,7 +452,6 @@ possible values or a numeric range. | 
| 
 | 
 | 
-   `06` (`_C.flag[0-7]`)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.flag[0-7]`: freely usable parameter of `int` type.
 | 
| 
 | 
 | 
        $y=10^{-7}$
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
**SOLVER SPECIFICATIONS**:
 | 
| 
 | 
 | 
 | 
| ... | ... | @@ -540,7 +537,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
    -   `_C.reactions_max_changeX` (typical value: $<0.1$): allowed
 | 
| 
 | 
 | 
        maximal relative change of species number densities (or total
 | 
| 
 | 
 | 
        number density) in the time integration of the chemo-thermal
 | 
| 
 | 
 | 
        rate equations. $y=10^{-7}$
 | 
| 
 | 
 | 
        rate equations.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
        **Important:** The macro `SXN` in module `solveNCCM.c` is a
 | 
| 
 | 
 | 
        linear weight applying `_C.reactions_max_change` to a combined
 | 
| ... | ... | @@ -580,8 +577,8 @@ possible values or a numeric range. | 
| 
 | 
 | 
        from the momentum equation and the induction equation is not
 | 
| 
 | 
 | 
        solved.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.permeability_rel`: relative magnetic permeability
 | 
| 
 | 
 | 
        $\mu_{rel}$ ($=\mu/\mu_0,\,\mu_0=4\pi\cdot10^{-7}\mathtt{V}\cdot\mathtt{m}^{-1}\cdot\mathtt{A}^{-1}\cdot\mathtt{s}^{-1}$).
 | 
| 
 | 
 | 
    -   `_C.permeability_rel`: relative magnetic permeability $\mu_{rel}$ 
 | 
| 
 | 
 | 
        ($=\mu/\mu_0,\,\mu_0=4\pi\cdot10^{-7}\mathtt{V}\cdot\mathtt{m}^{-1}\cdot\mathtt{A}^{-1}\cdot\mathtt{s}^{-1}$).
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
        **Important:** The Gaussian unit system can be mimicked by
 | 
| 
 | 
 | 
        choosing a value ${\tt \_C.permeability\_rel}=10^7$ so that
 | 
| ... | ... | @@ -623,7 +620,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
        `_C.conduction_coeff` (and `_C.conduction_coeff_perp` in the
 | 
| 
 | 
 | 
        anisotropic case) described below. U enables thermal conduction
 | 
| 
 | 
 | 
        with a user-defined conduction coefficient as coded in the user
 | 
| 
 | 
 | 
        interface function **conductionCoeffUser()** (cf. [Thermal
 | 
| 
 | 
 | 
        interface function `conductionCoeffUser()` (cf. [Thermal
 | 
| 
 | 
 | 
        conduction](#thermal-conduction)). S enables thermal conduction
 | 
| 
 | 
 | 
        using the standard Spitzer conductivity model predefined in
 | 
| 
 | 
 | 
        NIRVANA (cf. [physics
 | 
| ... | ... | @@ -650,8 +647,7 @@ possible values or a numeric range. | 
| 
 | 
 | 
        described below. U enables ambipolar diffusion with a
 | 
| 
 | 
 | 
        user-defined anbipolar diffusion coefficient as coded in the
 | 
| 
 | 
 | 
        user interface function **APdiffusionCoeffUser()** (cf.
 | 
| 
 | 
 | 
        [Ambipolar
 | 
| 
 | 
 | 
        diffusion](#user-defined-coefficient-for-ambipolar-diffusion)).
 | 
| 
 | 
 | 
        [Ambipolar diffusion](#user-defined-coefficient-for-ambipolar-diffusion)).
 | 
| 
 | 
 | 
        N disables ambipolar diffusion.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.APdiffusion_coeff`: constant ambipolar diffusion
 | 
| ... | ... | @@ -731,8 +727,8 @@ possible values or a numeric range. | 
| 
 | 
 | 
        adiabatic index is not a freely selectable parameter but is
 | 
| 
 | 
 | 
        approximated by the expression
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
        $\gamma=\left[5(n_\mathrm{H}+n_\mathrm{He}+n_\mathrm{e})+7n_{\mathrm{H}_2}\right]
 | 
| 
 | 
 | 
        /\left[3(n_\mathrm{H}+n_\mathrm{He}+n_\mathrm{e})+5n_{\mathrm{H}_2}\right]$.
 | 
| 
 | 
 | 
        $$\gamma=\left[5(n_\mathrm{H}+n_\mathrm{He}+n_\mathrm{e})+7n_{\mathrm{H}_2}\right]
 | 
| 
 | 
 | 
        /\left[3(n_\mathrm{H}+n_\mathrm{He}+n_\mathrm{e})+5n_{\mathrm{H}_2}\right]$$.
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
    -   `_C.polytropic_constant`: polytropic constant in the polytropic
 | 
| 
 | 
 | 
        EOS.
 | 
| ... | ... | @@ -815,10 +811,10 @@ energy density $e$ is irrelevant since no energy equation is solved. In | 
| 
 | 
 | 
HD simulations, the assignment of the magnetic field is redundant, of
 | 
| 
 | 
 | 
course, and would lead to an error because arrays for the magnetic field
 | 
| 
 | 
 | 
components are not allocated in the HD case. Likewise, arrays for tracer
 | 
| 
 | 
 | 
and species, $C_\mc$ and $n_\ms$, are not declared unless the parameters
 | 
| 
 | 
 | 
and species, $C_c$ and $n_s$, are not declared unless the parameters
 | 
| 
 | 
 | 
`_C.tracer`$>0$ respective ${\tt\_C.species}>0$. If the TESTFIELDS
 | 
| 
 | 
 | 
infrastructure is used (`_C.testfields`$>0$) testfields fluctuation
 | 
| 
 | 
 | 
variables, $\mathbf{b}_\mt,\,\mt=0,{\tt\_C.testfields}-1$, are also
 | 
| 
 | 
 | 
variables, $\mathbf{b}_t,\,t=0,{\tt\_C.testfields}-1$, are also
 | 
| 
 | 
 | 
considered as primary variables and must be assigned by the user. The
 | 
| 
 | 
 | 
parameter `_C.testfields` denotes the number of testfields.
 | 
| 
 | 
 | 
 | 
| ... | ... | @@ -851,7 +847,7 @@ structure](#mesh-data-structure). | 
| 
 | 
 | 
 | 
| 
 | 
 | 
There are two types of mesh variables: cell-averaged variables and
 | 
| 
 | 
 | 
face-averaged variables. Cell-averaged variables are
 | 
| 
 | 
 | 
$\varrho,m_x,m_y,m_z,n_\ms,C_\mc$. It are described by cell-centroid
 | 
| 
 | 
 | 
$\varrho,m_x,m_y,m_z,n_s,C_c$. It are described by cell-centroid
 | 
| 
 | 
 | 
coordinates. Face-averaged variables are the magnetic field components
 | 
| 
 | 
 | 
$B_x,B_y,B_z$ (and testfields). It are described by cell face-centroid
 | 
| 
 | 
 | 
coordinates.
 | 
| ... | ... | @@ -950,13 +946,13 @@ divergence-free setup: | 
| 
 | 
 | 
components by exact integration of given analytical expressions. For a
 | 
| 
 | 
 | 
grid cell (,,) on superblock `g` the discretized components would then
 | 
| 
 | 
 | 
read 
 | 
| 
 | 
 | 
$$\mathtt{g->bx[iz][iy][ix]}=\frac{1}{\d \mathcal{A}_x}\int
 | 
| 
 | 
 | 
$$\mathtt{g->bx[iz][iy][ix]}=\frac{1}{\delta \mathcal{A}_x}\int
 | 
| 
 | 
 | 
\limits_\mathtt{g->y[iy]}^\mathtt{g->y[iy+1]}
 | 
| 
 | 
 | 
\int\limits_\mathtt{g->z[iz]}^\mathtt{g->z[iz+1]} B_x(\mathtt{g->x[ix]},y,z)h_yh_zdydz$$
 | 
| 
 | 
 | 
$$\mathtt{g->by[iz][iy][ix]}=\frac{1}{\d \mathcal{A}_y}\int
 | 
| 
 | 
 | 
$$\mathtt{g->by[iz][iy][ix]}=\frac{1}{\delta \mathcal{A}_y}\int
 | 
| 
 | 
 | 
\limits_\mathtt{g->x[ix]}^\mathtt{g->x[ix+1]}
 | 
| 
 | 
 | 
\int\limits_\mathtt{g->z[iz]}^\mathtt{g->z[iz+1]} B_y(x,\mathtt{g->y[iy]},z)h_zdxdz$$
 | 
| 
 | 
 | 
$$\mathtt{g->bz[iz][iy][ix]}=\frac{1}{\d \mathcal{A}_z}\int
 | 
| 
 | 
 | 
$$\mathtt{g->bz[iz][iy][ix]}=\frac{1}{\delta \mathcal{A}_z}\int
 | 
| 
 | 
 | 
\limits_\mathtt{g->x[ix]}^\mathtt{g->x[ix+1]}
 | 
| 
 | 
 | 
\int\limits_\mathtt{g->y[iy]}^\mathtt{g->y[iy+1]} B_z(x,y,\mathtt{g->z[iz]})h_ydxdy$$
 | 
| 
 | 
 | 
where the numerical expressions for the cell faces are:
 | 
| ... | ... | @@ -974,23 +970,23 @@ integration over cell faces turns out to be too complicated. | 
| 
 | 
 | 
The face-averaged magnetic field components are then obtained from the
 | 
| 
 | 
 | 
integral form of $\mathbf{B}=\nabla\times \mathbf{A}$:
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
`g->bx[iz][iy][ix]`$=\left[h_y\Delta_\miy (h_{zy}\hat{A}_z)
 | 
| 
 | 
 | 
-h_y\Delta_\miz \hat{A}_y\right]/\d \mathcal{A}_x$
 | 
| 
 | 
 | 
`g->bx[iz][iy][ix]`$=\left[h_y\Delta_{iy} (h_{zy}\hat{A}_z)
 | 
| 
 | 
 | 
-h_y\Delta_{iz} \hat{A}_y\right]/\delta \mathcal{A}_x$
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
`g->by[iz][iy][ix]`$=\left[\Delta_\miz \hat{A}_x
 | 
| 
 | 
 | 
-h_{zy}\Delta_\mix (h_y\hat{A}_z)\right]/\d \mathcal{A}_y$
 | 
| 
 | 
 | 
`g->by[iz][iy][ix]`$=\left[\Delta_{iz} \hat{A}_x
 | 
| 
 | 
 | 
-h_{zy}\Delta_{ix} (h_y\hat{A}_z)\right]/\delta \mathcal{A}_y$
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
`g->bz[iz][iy][ix]`$=\left[\Delta_\mix (h_y\hat{A}_y)
 | 
| 
 | 
 | 
-\Delta_\miy \hat{A}_x\right]/\d \mathcal{A}_z$
 | 
| 
 | 
 | 
`g->bz[iz][iy][ix]`$=\left[\Delta_{ix} (h_y\hat{A}_y)
 | 
| 
 | 
 | 
-\Delta_{iy} \hat{A}_x\right]/\delta \mathcal{A}_z$
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
where the difference operators $\Delta_\mix$, $\Delta_\miy$ and
 | 
| 
 | 
 | 
$\Delta_\miz$ are given by
 | 
| 
 | 
 | 
where the difference operators $\Delta_{ix}$, $\Delta_{iy}$ and
 | 
| 
 | 
 | 
$\Delta_{iz}$ are given by
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
$\Delta_{\mix}X=X(\mathtt{ix+1,iy,iz})-X(\mathtt{ix,iy,iz})$,
 | 
| 
 | 
 | 
$\Delta_{ix}X=X(\mathtt{ix+1,iy,iz})-X(\mathtt{ix,iy,iz})$,
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
$\Delta_{\miy}X=X(\mathtt{ix,iy+1,iz})-X(\mathtt{ix,iy,iz})$,
 | 
| 
 | 
 | 
$\Delta_{iy}X=X(\mathtt{ix,iy+1,iz})-X(\mathtt{ix,iy,iz})$,
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
$\Delta_{\miz}X=X(\mathtt{ix,iy,iz+1})-X(\mathtt{ix,iy,iz})$
 | 
| 
 | 
 | 
$\Delta_{iz}X=X(\mathtt{ix,iy,iz+1})-X(\mathtt{ix,iy,iz})$
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
and $(\hat{A}_x,\hat{A}_y,\hat{A}_z)$ are the cell-edge integrals
 | 
| 
 | 
 | 
 | 
| ... | ... | @@ -1436,7 +1432,7 @@ by the appropriate choice of parameter `_C.conduction` in file | 
| 
 | 
 | 
Ohmic diffusion enters the induction equation and energy equation as a
 | 
| 
 | 
 | 
field contribution given by
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
$\mathbf{E}_\mathrm{D}=\eta_\mathrm{D} \nabla\times\mathbf{B}$
 | 
| 
 | 
 | 
$$\mathbf{E}_\mathrm{D}=\eta_\mathrm{D} \nabla\times\mathbf{B}$$
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
where $\eta_\mathrm{D}$ in units \[m$^2\cdot$s$^{-1}$\] is the diffusion
 | 
| 
 | 
 | 
coefficient.
 | 
| ... | ... | @@ -1475,8 +1471,8 @@ user-defined ambipolar diffusion coefficient. | 
| 
 | 
 | 
Ambipolar diffusion enters the induction equation and energy equation as
 | 
| 
 | 
 | 
a field contribution given by
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
$\mathbf{E}_\mathrm{AD}=\eta_\mathrm{AD}/\mu\mathbf{B}\times\left[(\nabla\times\mathbf{B})
 | 
| 
 | 
 | 
\times\mathbf{B}\right]$
 | 
| 
 | 
 | 
$$\mathbf{E}_\mathrm{AD}=\eta_\mathrm{AD}/\mu\mathbf{B}\times\left[(\nabla\times\mathbf{B})
 | 
| 
 | 
 | 
\times\mathbf{B}\right]$$
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
where $\eta_\mathrm{AD}$ \[V$\cdot$m$\cdot$A$^{-1}\cdot$T$^{-2}$\]
 | 
| 
 | 
 | 
denotes the ambipolar diffusion coefficient. The prefactor
 | 
| ... | ... |  |