Changes
Page history
Update 3.2 User interfaces
authored
Jan 09, 2021
by
Udo Ziegler
Show whitespace changes
Inline
Side-by-side
3-NIRVANA-user-guide/3.2-User-interfaces.md
View page @
ec676841
...
...
@@ -947,18 +947,6 @@ field is per se cell-wise divergence-free. For a grid cell
(
`ix`
,
`iy`
,
`iz`
) on superblock
`g`
this means

$$
\\
mathtt{g-
>
bx
\[
iz
\]\[
iy
\]\[
ix
\]
}=
\\
frac{1}{
\\
delta
\\
,
\\
!
\\
mathcal{A}
\_
x}
\\
int
\\
limits
\_\\
mathtt{g-
>
y\[iy\]}^\\mathtt{g-
>
y
\[
iy+1
\]
}
\\
int
\\
limits
\_\\
mathtt{g-
>
z\[iz\]}^\\mathtt{g-
>
z
\[
iz+1
\]
} B
\_
x(
\\
mathtt{g-
>
x
\[
ix
\]
},y,z)h
\_
yh
\_
zdydz$$
$$
\\
mathtt{g-
>
by
\[
iz
\]\[
iy
\]\[
ix
\]
}=
\\
frac{1}{
\\
delta
\\
,
\\
!
\\
mathcal{A}
\_
y}
\\
int
\\
limits
\_\\
mathtt{g-
>
x\[ix\]}^\\mathtt{g-
>
x
\[
ix+1
\]
}
\\
int
\\
limits
\_\\
mathtt{g-
>
z\[iz\]}^\\mathtt{g-
>
z
\[
iz+1
\]
} B
\_
y(x,
\\
mathtt{g-
>
y
\[
iy
\]
},z)h
\_
zdxdz$$
$$
\\
mathtt{g-
>
bz
\[
iz
\]\[
iy
\]\[
ix
\]
}=
\\
frac{1}{
\\
delta
\\
,
\\
!
\\
mathcal{A}
\_
z}
\\
int
\\
limits
\_\\
mathtt{g-
>
x\[ix\]}^\\mathtt{g-
>
x
\[
ix+1
\]
}
\\
int
\\
limits
\_\\
mathtt{g-
>
y\[iy\]}^\\mathtt{g-
>
y
\[
iy+1
\]
} B
\_
z(x,y,
\\
mathtt{g-
>
z
\[
iz
\]
})h
\_
ydxdy$$
The numerical expressions for the cell face contents are:
| cell face | expression |
...
...
@@ -971,28 +959,19 @@ The numerical expressions for the cell face contents are:
**B**
= ∇ ×
**A**
. When discretized in integral form this gives for the
face-averaged magnetic field components
`g->bx[iz][iy][ix]`
=
\[
*h*
<sub>
*y*
</sub>
*Δ*
<sub>
`i`
*y*
</sub>
(
*h*
<sub>
*z
**
y*
</sub>
*Â*
<sub>
*z*
</sub>
)−
*h*
<sub>
*y*
</sub>
*Δ*
<sub>
`i`
*z*
</sub>
*Â*
<sub>
*y*
</sub>
\]
/
*δ*
𝒜
<sub>
*x*
</sub>
`g->bx[iz][iy][ix]`
=
\[
*h*
<sub>
*y*
</sub>
*Δ*
<sub>
`i
y
`
</sub>
(
*h*
<sub>
*zy*
</sub>
*Â*
<sub>
*z*
</sub>
)−
*h*
<sub>
*y*
</sub>
*Δ*
<sub>
`i
z
`
</sub>
*Â*
<sub>
*y*
</sub>
\]
/
*δ*
𝒜
<sub>
*x*
</sub>
`g->by[iz][iy][ix]`
=
\[
*Δ*
<sub>
`i`
*z*
</sub>
*Â*
<sub>
*x*
</sub>
−
*h*
<sub>
*z
**
y*
</sub>
*Δ*
<sub>
`i`
*x*
</sub>
(
*h*
<sub>
*y*
</sub>
*Â*
<sub>
*z*
</sub>
)
\]
/
*δ*
𝒜
<sub>
*y*
</sub>
`g->by[iz][iy][ix]`
=
\[
*Δ*
<sub>
`i
z
`
</sub>
*Â*
<sub>
*x*
</sub>
−
*h*
<sub>
*zy*
</sub>
*Δ*
<sub>
`i
x
`
</sub>
(
*h*
<sub>
*y*
</sub>
*Â*
<sub>
*z*
</sub>
)
\]
/
*δ*
𝒜
<sub>
*y*
</sub>
`g->bz[iz][iy][ix]`
=
\[
*Δ*
<sub>
`i`
*x*
</sub>
(
*h*
<sub>
*y*
</sub>
*Â*
<sub>
*y*
</sub>
)−
*Δ*
<sub>
`i`
*y*
</sub>
*Â*
<sub>
*x*
</sub>
\]
/
*δ*
𝒜
<sub>
*z*
</sub>
`g->bz[iz][iy][ix]`
=
\[
*Δ*
<sub>
`i
x
`
</sub>
(
*h*
<sub>
*y*
</sub>
*Â*
<sub>
*y*
</sub>
)−
*Δ*
<sub>
`i
y
`
</sub>
*Â*
<sub>
*x*
</sub>
\]
/
*δ*
𝒜
<sub>
*z*
</sub>
where (
*Â*
<sub>
*x*
</sub>
,
*Â*
<sub>
*y*
</sub>
,
*Â*
<sub>
*z*
</sub>
) denote
the path integrals
$$
\\
hat{A}
\_
x(
\\
mathtt{ix,iy,iz})=
\\
int
\\
limits
\_\\
mathtt{g-
>
x\[ix\]}^\\mathtt{g-
>
x
\[
ix+1
\]
}
A
\_
x(x,
\\
mathtt{g-
>
y\[iy\]},\\mathtt{g-
>
z
\[
iz
\]
})dx$$
$$
\\
hat{A}
\_
y(
\\
mathtt{ix,iy,iz})=
\\
int
\\
limits
\_\\
mathtt{g-
>
y\[iy\]}^\\mathtt{g-
>
y
\[
iy+1
\]
}
A
\_
y(
\\
mathtt{g-
>
x\[ix\]},y,\\mathtt{g-
>
z
\[
iz
\]
})dy$$
$$
\\
hat{A}
\_
z(
\\
mathtt{ix,iy,iz})=
\\
int
\\
limits
\_\\
mathtt{g-
>
z\[iz\]}^\\mathtt{g-
>
z
\[
iz+1
\]
}
A
\_
z(
\\
mathtt{g-
>
x\[ix\]},\\mathtt{g-
>
y
\[
iy
\]
},z)dz$$

over corresponding cell edges. The difference operator
*Δ*
<sub>
`i`
*y*
</sub>
, for instance, is given by
*Δ*
<sub>
`i`
*y*
</sub>
*Â*
<sub>
*x*
</sub>
=
*Â*
<sub>
*x*
</sub>
(
`i
``x``,`
`i``y`
`+`
`1``
,`
`i
``
z`
) −
*Â*
<sub>
*x*
</sub>
(
`i
``
x`
`
,`
`i``y``,`
`i``
z`
)
*Δ*
<sub>
`i
y
`
</sub>
*Â*
<sub>
*x*
</sub>
=
*Â*
<sub>
*x*
</sub>
(
`i
x`
,
`iy`
+1
,
` `
iz
`) − *Â*<sub>*x*</sub>(`
ix
`,`
iy
`,`
i
z
`)
and similarly for others. If the *Â*’s are *unambiguously* computed (or
approximated) on coinciding cell edges in the grid hierarchy, the
...
...
...
...