... | ... | @@ -946,19 +946,7 @@ exact integration of the analytical expressions. The so discretized |
|
|
field is per se cell-wise divergence-free. For a grid cell
|
|
|
(`ix`,`iy`,`iz`) on superblock `g` this means
|
|
|
|
|
|

|
|
|
$$\\mathtt{g->bx\[iz\]\[iy\]\[ix\]}=\\frac{1}{\\delta\\,\\!\\mathcal{A}\_x}\\int
|
|
|
\\limits\_\\mathtt{g->y\[iy\]}^\\mathtt{g->y\[iy+1\]}
|
|
|
\\int\\limits\_\\mathtt{g->z\[iz\]}^\\mathtt{g->z\[iz+1\]} B\_x(\\mathtt{g->x\[ix\]},y,z)h\_yh\_zdydz$$
|
|
|
|
|
|
$$\\mathtt{g->by\[iz\]\[iy\]\[ix\]}=\\frac{1}{\\delta\\,\\!\\mathcal{A}\_y}\\int
|
|
|
\\limits\_\\mathtt{g->x\[ix\]}^\\mathtt{g->x\[ix+1\]}
|
|
|
\\int\\limits\_\\mathtt{g->z\[iz\]}^\\mathtt{g->z\[iz+1\]} B\_y(x,\\mathtt{g->y\[iy\]},z)h\_zdxdz$$
|
|
|
|
|
|
$$\\mathtt{g->bz\[iz\]\[iy\]\[ix\]}=\\frac{1}{\\delta\\,\\!\\mathcal{A}\_z}\\int
|
|
|
\\limits\_\\mathtt{g->x\[ix\]}^\\mathtt{g->x\[ix+1\]}
|
|
|
\\int\\limits\_\\mathtt{g->y\[iy\]}^\\mathtt{g->y\[iy+1\]} B\_z(x,y,\\mathtt{g->z\[iz\]})h\_ydxdy$$
|
|
|
|
|
|

|
|
|
The numerical expressions for the cell face contents are:
|
|
|
|
|
|
| cell face | expression |
|
... | ... | @@ -971,28 +959,19 @@ The numerical expressions for the cell face contents are: |
|
|
**B** = ∇ × **A**. When discretized in integral form this gives for the
|
|
|
face-averaged magnetic field components
|
|
|
|
|
|
`g->bx[iz][iy][ix]` = \[*h*<sub>*y*</sub>*Δ*<sub>`i`*y*</sub>(*h*<sub>*z**y*</sub>*Â*<sub>*z*</sub>)−*h*<sub>*y*</sub>*Δ*<sub>`i`*z*</sub>*Â*<sub>*y*</sub>\]/*δ*𝒜<sub>*x*</sub>
|
|
|
`g->bx[iz][iy][ix]` = \[*h*<sub>*y*</sub>*Δ*<sub>`iy`</sub>(*h*<sub>*zy*</sub>*Â*<sub>*z*</sub>)−*h*<sub>*y*</sub>*Δ*<sub>`iz`</sub>*Â*<sub>*y*</sub>\]/*δ*𝒜<sub>*x*</sub>
|
|
|
|
|
|
`g->by[iz][iy][ix]` = \[*Δ*<sub>`i`*z*</sub>*Â*<sub>*x*</sub>−*h*<sub>*z**y*</sub>*Δ*<sub>`i`*x*</sub>(*h*<sub>*y*</sub>*Â*<sub>*z*</sub>)\]/*δ*𝒜<sub>*y*</sub>
|
|
|
`g->by[iz][iy][ix]` = \[*Δ*<sub>`iz`</sub>*Â*<sub>*x*</sub>−*h*<sub>*zy*</sub>*Δ*<sub>`ix`</sub>(*h*<sub>*y*</sub>*Â*<sub>*z*</sub>)\]/*δ*𝒜<sub>*y*</sub>
|
|
|
|
|
|
`g->bz[iz][iy][ix]` = \[*Δ*<sub>`i`*x*</sub>(*h*<sub>*y*</sub>*Â*<sub>*y*</sub>)−*Δ*<sub>`i`*y*</sub>*Â*<sub>*x*</sub>\]/*δ*𝒜<sub>*z*</sub>
|
|
|
`g->bz[iz][iy][ix]` = \[*Δ*<sub>`ix`</sub>(*h*<sub>*y*</sub>*Â*<sub>*y*</sub>)−*Δ*<sub>`iy`</sub>*Â*<sub>*x*</sub>\]/*δ*𝒜<sub>*z*</sub>
|
|
|
|
|
|
where (*Â*<sub>*x*</sub>, *Â*<sub>*y*</sub>, *Â*<sub>*z*</sub>) denote
|
|
|
the path integrals
|
|
|
|
|
|
$$\\hat{A}\_x(\\mathtt{ix,iy,iz})=\\int\\limits\_\\mathtt{g->x\[ix\]}^\\mathtt{g->x\[ix+1\]}
|
|
|
A\_x(x,\\mathtt{g->y\[iy\]},\\mathtt{g->z\[iz\]})dx$$
|
|
|
|
|
|
$$\\hat{A}\_y(\\mathtt{ix,iy,iz})=\\int\\limits\_\\mathtt{g->y\[iy\]}^\\mathtt{g->y\[iy+1\]}
|
|
|
A\_y(\\mathtt{g->x\[ix\]},y,\\mathtt{g->z\[iz\]})dy$$
|
|
|
|
|
|
$$\\hat{A}\_z(\\mathtt{ix,iy,iz})=\\int\\limits\_\\mathtt{g->z\[iz\]}^\\mathtt{g->z\[iz+1\]}
|
|
|
A\_z(\\mathtt{g->x\[ix\]},\\mathtt{g->y\[iy\]},z)dz$$
|
|
|
|
|
|

|
|
|
over corresponding cell edges. The difference operator
|
|
|
*Δ*<sub>`i`*y*</sub>, for instance, is given by
|
|
|
|
|
|
*Δ*<sub>`i`*y*</sub>*Â*<sub>*x*</sub> = *Â*<sub>*x*</sub>(`i``x``,` `i``y` `+` `1``,` `i``z`) − *Â*<sub>*x*</sub>(`i``x``,` `i``y``,` `i``z`)
|
|
|
*Δ*<sub>`iy`</sub>*Â*<sub>*x*</sub> = *Â*<sub>*x*</sub>(`ix`,`iy`+1,` `iz`) − *Â*<sub>*x*</sub>(`ix`,`iy`,`iz`)
|
|
|
|
|
|
and similarly for others. If the *Â*’s are *unambiguously* computed (or
|
|
|
approximated) on coinciding cell edges in the grid hierarchy, the
|
... | ... | |